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Oncogenesis and ionizing radiation

Mechanisms leading to the development of cancer cau-
sed by exposure to radon are not yet sufficiently known,
however, it can be stated with a high dose of probability
that genetic and epigenetic1 changes are engaged in this
process [1]. Unscear’s article contains a review of latest in-
formation gathered in recent years pertaining to biological
mechanisms of low doses impact [2].

Organism’s exposure to ionizing radiation causes im-
pacts and reactions in atoms and particles, which result in
changes emerging in DNA, cells, tissues and organs. The
most significant damage relates to DNA and may influ-
ence only the particle or histone proteins connected with
it. In a DNA molecule, the DNA strands may break or
nucleotides may be modified, which consequently may di-
stort gene expression due to the mutation. Radon may also
cause changes in genes responsible for proliferation of can-
cer cells and their diversification [3]. The research on mi-
ners employed in a radon mine revealed that 31% of lung
carcinomas have the same mutation in 249 codon of the
p53 gene [4]. Other genetic damages are chromosome aber-
rations and the induction of micronuclei, which in certain
conditions may cause cancer [5].

There are constantly more evidence that the results of
DNA damages caused by ionizing radiation vary from spon-
taneous DNA damages [6]. The difference lies in a distinct
microdistribution of damages along the DNA strands [7]. It
is assumed that ionization produced by secondary electrons
causes the emergence of grons or clusters of OH radicals,
which mostly destroy DNA sections existing near the areas

1Epigenetic modification, the modification of DNA or associated
chromatin proteins that leads to altered expression of genes. DNA
methylation, histone acetylation and methylation are among the epi-
genetic marks currently known.

with high local concentration of radicals [8]. Due to the fact

that OH radicals have very limited range (3nm), resulting
from their high radioactivity, the produced damages are in-
cluded along the DNA strands in the area of a few pairs of
bases. In order for the produced DNA damage not to cause
mutation, it should be precisely repaired. There are obse-
rvations that contrary to spontaneous damages, the DNA
damages caused by ionizing radiation are repaired with dif-
ficulties or are repaired incorrectly or are impossible to re-
pair [9]. This observation proves the thesis that there is no
threshold of ionizing radiation dose below which this ra-
diation does not evoke considerable biological effects in a
cell [10]. The majority of damages is repaired but it is not
always complete and it may cause the cell’s death or its
further functioning with a faulty repair. Death of a small
number of somatic cells due to ionizing radiation does not
cause perceptible health effects. If, however, a greater dose
of radiation (from 0.5 Sv to several Sv) evokes elimination
of a large number of stem cells and progenitur cells, it cau-
ses various symptoms of disease, such as: reduced number
of white blood cells, erythema, skin ulcers, tissue necrosis,
vomiting, diarrhea, the rise in body temperature. The enu-
merated symptoms are called deterministic effects. They
emerge in a short intervening period after the exposure (ho-

urs, days), usually after a short organism’s irradiation with
high doses. Intensification of disease symptoms is propor-
tional to the absorbed dose. If damages impair elementary
living functions, it may lead to death of an organism. For
example, 4 Sv dose covering the whole body leads to de-
ath of half of the people in the irradiated group during
the period of two months. The literature includes extensive
documentation of deterministic damages based mostly on
observations of people after radiological accidents [11,12].
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If, however, cell damage is not fatal but only some of
its functions are disorganized, the produced mutation can
be transmitted to progeny cells. Mutations in somatic cells’
genes may lead to initiation, promotion and cancer cells
progression, which ends in cancer. Mutations and their cli-
nical consequences appear randomly (stochastically).

After the date of irradiation, cancer can develop in a few
or even a few dozen years. Leukemia appears the quickest
after the exposure – about two years and for solid tumors
the period without symptoms lasts from 8 to 10 years [13].
If the mutations develop in reproductive cells (sperm, egg
cells), it is possible that children will develop hereditary
diseases or congenital malfunctions. Such observations are
well documented on animal testing [14].

The risk coefficient of cancer in the exposed population
depends on dose amount, but the size of health detriment
and the clinical course of disease do not depend on the
amount of the absorbed dose [15]. In the range of moderate
and high doses, the frequency of stochastic effects emer-
gence (cancers) increases together with the dose’s quantity.
However, after exceeding certain limit, its further increase
causes the decrease in the number of people suffering from
cancer in relation to the number of irradiated ones. It is the
result of a larger number of cells damaged by radiation in
relation to the number of mutated cells [11, 16].

Linear and threshold theory

ICRP believes that only linear theory is applicable, which
connects the dose with the result. However, several hypo-
theses are considered that try to link the amount of absor-
bed dose of ionizing radiation with the caused radiobiolo-
gical effects. The most intense discussion and experimental
works focus on detecting the dose threshold and its poten-
tial value below which there are no harmful radiobiological
effects. Up to now, this issue has not been settled, altho-
ugh there are constantly more evidence on the possibility
of such a threshold’s existence.

Linear theory

This theory assumes the possibility of linear extrapola-
tion of consequences caused by harmful impact of radiation
in the range of average and higher doses up to the range of
small2 and very small ones. The basic assumption of this
theory is the statement that even one cell modified by ra-
diation, in further stages of its development, may lead to
the emergence of cancer. There are experimental evidence
that the general number of DNA damages depends linearly
on radiation dose [10,18]. This theory silently assumes that
mechanisms of repairing post-radiation damages existing in

2Up to the present, there is no clear limit below which the doses
should be called small [17].

an organism and immunological protection are not always
reliable. Theoretical considerations of α radiation’s impact
on DNA seem to prove the validity of linear dependence
between the effective dose of ionizing radiation absorbed
by a tissue and the initiation of cancer process [19]. Rela-
tive risk of lung carcinoma increases together with radon
concentration in houses [20].

Threshold theory

If we assume that in order for cancer to initiate, it needs
post-radiation modifications in more than one cell, then the
existence of threshold dose becomes understandable. The
published observations carried out in recent years, call into
question the linear theory. The examinations of non-targed
effects and genes expression suggest that cell reaction to
small doses may vary from processes caused by the exposure
with average and higher doses [21,22].

Non-linear dependence of biological reactions to small
doses was revealed, which differs in nature from the reac-
tion to high doses [23]. Moreover, the so-called ‘bystander

effects’3, dependent on the dose, visibly vary from linearity.
Portess et al. observed that stimulation of pre-cancer

cells apoptosis increases after exposure to gamma radia-
tions with small doses starting with 2 mGy. The magni-
tude of apoptosis raises together with increasing the dose
to about 100 mGy, however, further increase in the dose
does not cause apoptosis growth [24].

On the other hand, there are experimental evidence that
the general number of damages in the cell DNA depends li-
nearly on the radiation dose [10,18]. It leads to assume that
there is no ionizing radiation dose threshold below which
ionizing radiation does not cause significant biological ef-
fects in the cell [10]. It should be noticed that the linear
theory is the assumption dictated by cautiousness and held
for radiological protection reasons and it is not the proved
scientific fact [25]. Up to the present, in radiological pro-
tection, the so-called ‘linear dependence dose-response’ is
in force. This dependence implies that even the dose of io-
nizing radiation slightly higher than zero absorbed by cells
causes the possibility (although minimal) of cancer proces-
ses initiation [19,26].

Epidemiological studies

The dependence between radon concentration in the air
and lung carcinoma was noticed in the second half of the
20th century. The systematized observations of miners be-
gan in the 60s of the 20th century [27–29]. A majority of
epidemiological evidence for the cancerogenic activity of ra-
don derives from the analysis of registries of lung carcinoma
3Bystander effects – effects observed in non-radiated cells surroun-

ding cells that were directly irradiated.
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among the miners working in uranium mines [30, 31]. The
results of the studies indicated that the number of registries
of lung carcinoma increased together with the amount of ac-
cumulated dose absorbed by tissues and constituted linear
dependence between exposure and the risk of cancer.

In order to increase the statistical power of conclusions,
several meta analyses were carried out (collective analyses)
by combining and summarizing the statistical risk coeffi-
cients, such as relative risks from an individual cohort. The
first such meta analysis including miners from the three
mines: The Colorado Plateau, USA, The Eldorado mine in
Ontario, Canada, and Swedish iron miners in Malmberget,
was published in 1988 by BEIR IV Committee [32]. The
next work was published in 2003 by Lubin et al. and cove-
red 11 mining cohorts [33]. The collective analysis of people

at risk of relatively small exposure (4 WL)4 with the data
including 10100 miners and 574 cases of lung carcinoma,
was presented by Tomasek et al. in 2008 [34]. The most ro-
bust overview was published by Grosche et al. in 2006 [35].
It included meta analysis of data pertaining to 59000 mi-
ners of uranium mines, where 2388 cases of lung carcinoma
were detected. These data were collected in the period of
52 years (1946-1988). The meta analyses presented above
provided convincing evidence on the increase in lung car-
cinoma risk as a result of long lasting exposure to higher
radon concentration.

Radon in houses (indoor)
and the risk of lung carcinoma

The case that is still left open is the possibility of using
the data obtained from mining cohorts observations to as-
sess harmfulness of radon exposure in apartments [36]. Ac-
cording to the authors, this remark pertains to the doses re-
ceived throughout lifetime that are higher than 50 WLM5.
However, exposure in houses6 is usually considerably lower,
as it amounts to 15-20 WLM7 [41]. The U.S. Environmental
Protection Agency estimated that due to radon occurrence
in houses, in the USA during a year, 7000 – 30000 citizens
die of lung carcinoma [42].

4WL – working level, one WL equals any combination of radon
progeny in 1 litre of air that gives the ultimate emission of 1.3 × 105
MeV of energy of α particles
5WLM – Working Level Months is defined as exposure resulting

from inhalation of air with a 1 WL concentration for 170 hours (a
typical working month).
6The precise conversion of exposure in WLM units obtained by

miners in mines to the exposure received by people in houses is not
possible without knowing the F balance coefficient, which depends on
local exposure conditions. By assuming that F balance coefficient =
0.4 we obtain 1 WLM that equals the annual exposition absorption by
bronchi, with radon concentration of 225 Bq/m3 in the indoor air [37].
7In the state of radioactive balance with its progeny (1WL=3700

Bq of radon in m3) [38]. In apartments, where generally F=0.5,
1WL=7400 Bq/m3 [39]. In epidemiological studies, the conversion
coefficient of 4 mSv/WLM is often used [40].

Lubin et al. similarly assessed the number of people dy-
ing of lung carcinoma in the USA caused by radon in ho-
uses. According to them, this number is contained within
the range from 6000 to 36000 people annually [42, 43]. Se-
veral studies have also detected an inverse exposure rate
effect, i.e. low exposure rates for protracted duration of
exposure are more hazardous than equivalent cumulative
exposures received at higher rates for shorter period of
time [44,45]. Hill et al. agree with this conclusion [45]. Lu-
bin et al. also claim that lowering the dose with the same
total exposure increases the risk of cancer [41].

However, the evidence on lung carcinoma caused by ra-
don present in houses were not explicit until the end of the
20th century. Meta analysis of eight works conducted by
Lubin and Boice in 1997 indicated the visible causal rela-
tionship between radon presence in houses and lung carci-
noma [39]. However, there are also epidemiological reports
analyzing the connection between lung carcinoma and the
presence of radon in houses that did not reveal any visible
dependence [46–48].

As can be concluded from the above description, the is-
sue of the influence of radon in houses on lung carcinoma
had not been resolved for many years. Dary and 26 co-
authors conducted pooled analysis of the raw data from
separate residential case-control of 13 studies carried out in
Europe. The whole analyzed pool covered 21.356 people in-
cluding 7148 with lung carcinoma and 14.208 people consti-
tuted a control group. The collected detailed data from all
the people were transmitted to the questionnaires prepared
according to one scheme. In the questionnaires, apart from
radon concentration in houses, there were data on: smo-
king, age, sex and many different information that could
be connected with lung carcinoma. Much effort was made
to collect information on radon concentration in houses in-
habited for 30 years. In the group of the ill, the indoor radon
concentration amounted on average to 104 Bq m−3, and 97
Bq m−3 in the control group. In group of the ill, there was a
significant statistical excess relative risk (ERR) amounting

to 0.08/100 Bq m−3 (95% CI: 0.03 – 0.16). The dependence
dose-response seemed to be linear (the threshold with p =
0.04 was not detected). In the assessment of the authors,
radon causes a significant risk in apartments especially to
the smokers and ex-smokers. The authors of this work conc-
luded that radon inhalation in houses is the reason for 9%
of deaths caused by lung carcinoma or 2% of deaths in re-
lation to all deaths caused by cancers in Europe [49].

Radon and other cancers

The doses from radon and its progeny received by other
organs were estimated by Miles and Cliff in 1992. The in-
haled radon, after dissolution in blood, is transported to
all organs. Radon concentration in tissues and the doses
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of radon depend on the amount of fat in the organs. Ra-
don dissolution in fats is 16 times higher than in blood.
With radon concentration of 20 Bq m−3 in the surroun-
ding, it is assumed that the tissues with 1% of fat undergo
the exposure of 16 µSv [50]. According to Richardson et
al. estimations, with the same concentration, the doses on
marrow from radon may amount to 96 µSv as marrow con-
tains about 40% of fat [51]. With the action level of 200-600

Bq m−3, the dose on marrow lies within the range 100-300
µSv, and according to ICRP estimations, it can be two rates
higher in the lung area [52].

Some authors claim that the occurrence of other cancers
than lung carcinoma caused by radon seems doubtful. The
research conducted by Butland et al. [53] and Muirhead et
al. [54] do not indicate any connections between an indoor
exposure to radon and leukemia [55]. However, there are
reports from other researchers that radon also causes other
cancers. Henshaw et al. claim that an indoor exposure to
radon is connected with an increased risk of leukemia and
other cancers such as melanomas, kidney and prostate can-
cers [56].

Darby et al. presented data indicating the increased oc-
currence frequency of other cancers than lung carcinoma
among iron mines’ workers exposed to radon. Those mi-
ners, in relation to the control group, had increased morta-
lity caused by other cancers than lung carcinoma and this
mortality was 21% higher with the confidence level of 95%.
Stomach cancer developed 45% more often and anal can-
cer – 94% more often, with the same confidence level [57].
In another study, Darby et al. analyzed 11 mining cohorts
composed of 64000 miners, who on average were employed
for 6.4 years. The average exposure of those miners amoun-
ted to 155 WLM. Those authors did not notice the increase
in the general number of cancers. However, they observed
certain increase in stomach and liver cancers and decrease
in the number of tongue and pharynx cancers [58]. In the
neighborhood of the uranium reserves next to New Mexico
(USA), Wilkinson reported increased mortality caused by
stomach cancer [59]. Forastiere et al. observed, in the se-
lected Italian area (Viterbo) with the increased exposure
to radon, 2-3 times increase in risk of kidney cancer, me-
lanomas and marrow leukemia [60]. Edling et al. noticed
extender number of pancreaic cancer [61]. Bean et al. de-
scribed increased number of bladder and breast cancers [62].
Tomasek et al. published observation on enhanced number
of stomach, liver, gallbladder and bile ducts cancers among
miners of uranium mines in the Chech Republic [63].

Smoking as a factor distorting the observation
of cancerogenic effect of exposure to radon

The risk of lung carcinoma caused by exposure to radon
and its progeny should be assessed by taking into conside-

ration the widely described and well documented cancero-
genic effects of smoking [64]. The development of lung car-
cinoma among the non-smokers is much lower in relation
to the group of smokers. Only 5-10% of all lung carcinoma
cases occur in the non-smoking group [64]. The risk of lung
carcinoma increases together with the length of smoking
and number of cigarettes smoked daily. The risk of lung
carcinoma in smokers is 10 times higher and in people smo-
king large number of cigarettes – even 20 times higher [65].
Smoking is a decisive factor inducing lung carcinoma in re-
lation to the effects of radon exposure [66]. Due to this, the
cancerogenic effects of exposure to radon should be separa-
tely estimated for the group of smokers and non-smokers.
In case when one cancerogenic factor changes the effects of
another cancerogenic factor, we speak about interaction. In
the discussed case, smoking changes the effects of exposure
to radon and more precisely the effects of mucosa of bronchi
tree exposure on radon decay products [67]. The simulta-
neous activity of smoking and exposing oneself to radon
provides synergic effects. This synergy can be a multiplier
and in such a case, the risk of cancer is the product of risk
caused by smoking and the risk caused by exposure to ra-
don [67]. The possible synergy is also the one in which the
risk volume derived from every cancerogenic factor is added
up and then we may speak about the summary effect [68].
Risk volume caused by simultaneous activity of ionizing ra-
diation and smoking is not clearly established and there are
differences in its estimation in particular works [67,69,70].
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