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Introduction

For some time now, we have observed the dynamic de-
velopment of solutions offered by the Internet of Things.
These solutions are dedicated to the various areas of hu-
man activity, beginning with tools that monitor our life
functions, optimize the performance of devices in homes,
help to protect the environment by reducing energy con-
sumption or optimize the operation of urban traffic control
systems, and ending with systems supporting the operation
of large companies and factories. This development, on the
one hand, makes us optimistic about the fact that our func-
tioning is becoming more and more environmentally frien-
dly and easier. On the other hand, we are aware of the ever-
increasing threats to our privacy and security. The increase
in the importance and applicability of various methods of
information exchange contributes to the expansion of cryp-
tography, which had initially been only the domain of the
military and intelligence operatives. A major challenge for
today’s cryptography is the need to reduce the computatio-
nal costs of the solutions used, while maintaining adequate
security guarantees. This situation contributes to the se-
arch for cryptographic algorithms that provide similar, or
greater security than the popular RSA, and which will ge-
nerate lower computational costs. A good example of such
algorithms are algorithms based on elliptic curves. These
curves are also very helpful in the research into factoriza-
tion problems on which today’s cryptographic systems are
based. What is more, if we look closer at elliptic curves and
algebraic geometry, we will discover the problem of elliptic
curves based on isogenies, which is very important from the
perspective of post-quantum cryptography. In our work we
focus on the problem of factorization and pay special at-
tention to the tools the use of which may contribute to
the development of new solutions to improve the level of
security.

Fermat’s little Theorem

If p is a prime number and a ∈ N, then

ap ≡ a (mod p).

Further, if gcd(a, p) = 1

ap−1 ≡ 1 (mod p).

Elliptic curves

An elliptic curve E over a field F can be given by the We-
ierstrass equation:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where the coefficients a1, a2, a3, a4, a6 ∈ E. Koblitz [1] and
Miller [2] were the first to show that the group of rational
points on an elliptic curve E over a finite field Fq could
be used for the discrete logarithm problem in a public-key
cryptosystem.

The canonical short Weierstrass form of an elliptic curve
is given by the equation:

y2 = x3 + ax+ b,

together with a point at infinity O where the constants a, b
meet the additional condition:

4a3 + 27b2 6= 0.

The algorithm of adding points on the elliptic curve
Let E be an elliptic curve, and M1,M2 ∈ E, where

M1 = (x1, y1), M2 = (x2, y2), M3 = (x3, y3) and M3 =
M1 +M2, [3, 4] then:{

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1
,
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where:

λ =

{
y2−y1
x2−x1 if (x1, y1) 6= (x2,±y2)
3x21+a

2y1
if (x1, y1) = (x2,±y2)

.

Elliptic Curves Cryptography

ECC is an asymmetric cryptographic algorithm which invo-
lves some high-level calculation using mathematical curves
to encrypt and decrypt data. It is similar to RSA as it is
asymmetric, but it uses a very small length key as compa-
red to RSA. ECC is an asymmetric cryptographic algorithm
which involves the following steps [5, 6].
ECC Encryption

1. Define a curve.
2. Generate a public private key pair using that curve

for sender and receiver.
3. Generate a shared secret key from the key pair.

4. From that shared secret key, generate an encryption
key.

5. Using that encryption key and symmetric encryption
algorithm, encrypt the data to send.

ECC Decryption
The sender will either share the curve with receiver, or

the sender and the receiver will have the same use for the
same curve type. Also, the sender will share its public key
with the receiver.

1. Generate a public private key pair using the same
curve for that curve. for the receiver.

2. Regenerate a shared secret key using a private key of
the receiver and public key of the sender.

3. From that shared secret key, generate an encryption
key.

4. Using that encryption key and symmetric encryption
algorithm, decrypt the data.

Edwards curve

Edwards introduced a normal form for elliptic curves which
allowed the addition law to be stated explicitly and com-
pletely. Additionally, Bernstein and Lange introduced fast
formulas for the group operations on Edwards curves sho-
wing that these were in fact faster than those for most of
the other models for elliptic curves known at that time.
Edwards curves are thus gaining popularity in cryptogra-
phic applications.

Definition 0.1. Let K be a field with char(K) 6= 2. Then
an Edwards curve E over K is a curve

x2 + y2 = 1 + dx2y2

Where d ∈ K \{0, 1}. Bernstein, et. al. in [7] introduced
twisted Edwards curves which are curves of the form:

ax2 + y2 = 1 + dx2y2,

where a, d ∈ K are distinct and nonzero [8, 9].
Edwards addition law
Let E be an Edwards curve over a finite field K and

char(K) 6= 2. Let M1 = (x1, y1) and M2 = (x2, y2) be
points on E. We then define M3 = M1 +M2 as [10]:

M3 =
(

x1y2 + x2y1

1 + dx1x2y1y2
,
y1y2 − x1x2

1− dx1x2y1y2

)
and similarly define M4 = 2M1 as:

M4 =
(

2x1y1

1 + dx2
1y

2
1
,
y2

1 − x2
1

1− dx2
1y

2
1

)
Result 0.2. The zero element of the Edwards addition law
is (0; 1).

Proof Let M = (x, y) and O = (0, 1). Then, from the
addition law,

M+O = (x, y)+(0, 1) =
(

x+ 0
1 + d · 0

,
y − 0

1− d · 0

)
= (x, y) = M

Result 0.3. Result The inverse of any point (x1, y1) is (−x1, y1).

Fast formulas for group operations

Bernstein and Lange studied Edwards curves in the con-
text of cryptographic applications and concluded that the
Edwards curve supports faster addition and doubling. They
consider projective coordinates for their computations in
order to avoid inversions, as it appeared in the original
Edwards addition law. The Edwards form in the projective
coordinates is given by

x2 + y2 = c2(z4 + dx2y2)

where the corresponding affine coordinates (x, y) of a pro-
jective point (x, y, z) with z 6= 0 are given by

(x, y) =
(x
z
,
y

z

)
This article will only present the operations of addition and
doubling. More can be found in the literature [10].

Addition Given the points (x1, y1, z1) and (x2, y2, z2),
the sum (x3, y3, z3) = (x1, y1, z1) + (x2, y2, z2) is computed
using the following sequence of operations:

A = z1 · z2,
B = A2,
C = x1 · x2,
D = y1 · y2,
E = d · C ·D,
F = B − E,
G = B + E,
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 x3 = A · F · (x1 + y1) · (x2 + y2)− C −D)
y3 = A ·G · (D − C)
z3 = c · F ·G

.

Assuming the notations below
M - cost of general multiplication
S - cost of squaring
C - cost of multiplication by the Edwards parameter c
D - cost of multiplication by the Edwards parameter d
a - cost of addition/subtraction
it is easy to infer that the cost of an operation is

10M + 1S + 1C + 1D + 7a.

Doubling refers to the case when (x1, y1, z1) = (x2, y2, z2)
We save further operations by computing 2xy as

(x+ y)2 − x2 − y2

and using common subexpressions as is done in the case of
addition:

B = (x1 + x2)2,
C = x2

1,
D = y2

1 ,
E = C +D,
H = Z2

1 ,
J = E − 2H, x3 = (B − E) · J
y3 = E · (C −D)
z3 = E · J

.

The cost of doubling operation is 3M + 4S + 6a.

Other family of curves

Hessian curves The Hessian curves, introduced in [11],
by the formula

x3 + y3 + 1 = 3dxy

with d3−1 6= 0 and a point O = (1,−1) as neutral element.
The group law is given by:

(x3, y3) =


(
y21x2−y

2
2x1

x2y2−x1y1
,
x21y2−x

2
2y1

x2y2−x1y1

)
if (x1, y1) 6= (x2, y2)(

y1(1−x31)
x31−y

3
1
,
x1(y

3
1−1)

x2y2−x1y1

)
if (x1, y1) = (x2, y2)

Twisted Hessian form
The twisted Hessian curves [12] is defined by equation

ax3 + y3 + 1 = dxy,

with neutral element O = (0,−1) Twisted Hessian curves have
addition formula:

(x3, y3) =

(
x1 − y21x2y2
ax1y1x22 − y2

,
y1y

2
2 − ax21x2

ax1y1x22 − y2

)
.

Montgomery curves The Montgomery curves [13] is defined
by equation

by2 = x3 + ax2 + x,

such that b(a2 − 4) 6= 0. with operation of addition given by
formula

(x1, y1) + (x2, y2) =

=

(
b(x2y1 − x1y2)2

x1x2(x2 − x1)2
,

(2x1 + x2 + a)(y2 − y1)
x2 − x1

− b(y2 − y1)3

(x2 − x1)3 − y1

)
.

Integer Factorization Problem (IFP)

Problem definition The general integer factorization problem is
defined as follows. Given a positive integern, write

n = pe11 · p
e2
2 · p

e3
3 · . . . · p

ek
k

where pi are pairwise distinct primes and each ei  1. Ty-
pically, in practical cryptographic applications, only two factors
are used for modulus n. A larger number of factors for n does
not seem to offer any additional security in the IFP. The best-
known public key cryptosystem that bases its security on the
difficulty of the IFP is RSA [14,15].

Factoring algorithms

Polard’s p− 1 Method
The method is based on the previously mentioned Fermat’s

little theorem which, with the assumptions fulfilled, for each k

multiple of number p− 1 has the property:

ak ≡ 1 (mod p)

What follows is that ak − 1 is a multiple of number p. Thus,

every first divisorpof number n is also a divisor of n and ak − 1.

If we find such k that number ak − 1 is not divisible by n, then

the calculation of ak − 1 and gcd(ak − 1;n) will lead us to the
finding of the right divisor of number n.

In addition, if p − 1 has only small prime divisors qi, then
taking k as a product of sufficiently many initial primes, with
sufficiently high powers, we will obtain a product incorporating
all of the powers present in the distribution p−1 = qe11 · . . . ·q

em
m ,

and, thus, we will obtain a multiple of number p − 1 without
knowing this number. A problem appears in this method if p−1
has a very large prime divisor. In practice, an upper limit of B is
introduced and it is assumed that k is the product of the powers
of qi primes for which qeii ¬ B [16, 17].
Example For B = 17 we have:

24 ¬ 17; 32 ¬ 17; 51 ¬ 17; 71 ¬ 17

111 ¬ 17; 131 ¬ 17; 171 ¬ 17

Thus, k should be assumed as k = 24 ·32 ·5·7·11·13·17. If we take
B big enough for all the powers of primes in the distribution of
number p − 1 to not be bigger than B, then k obtained using
this method will be a multiple of number p − 1. Having k, we

compute ak ≡ 1 (mod n), and then gcd(ak − 1;n) for example
for a = 2. If we do not find the right divisor of number n, then
we increase the upper limit of B [18].

143



Maleszewski W.: Analysis of some contemporary cryptographic problems. . . Pol. J. Appl. Sci., 2017, 3, 141-145

Remark 0.4. THe number k can be assumed as, for example,
gcd(1; 2; . . . ;B) or even use the factorial B!.

Let n = 10001. Let’s start with a = 2. Then clearly
gcd(2; 10001) = 1, so we proceed into the loop. We first compute

a2! = 22 = 4. Then

gcd(a2! − 1;n) = gcd(3; 10001) = 1

so we continue. Now a3! = (a2!)3 = 43 = 64, and

gcd(a3! − 1;n) = gcd(63; 10001) = 1

Next a4! = (a3!)4 = 644 ≡ 5539 (mod 10001), and

gcd(a4! − 1;n) = gcd(5538; 10001) = 1

Next a5! = (a4!)5 = 55395 ≡ 7746 (mod 10001), and

gcd(a5! − 1;n) = gcd(7745; 10001) = 1

Next a6! = (a5!)6 = 77466 ≡ 1169 (mod 10001), and

gcd(a6! − 1;n) = gcd(1168; 10001) = 73.

We’ve run into a gcd(·) that is bigger than 1, and not equal to
n = 10001, so jackpot! 73 must be a prime factor of n. Then we
can compute quickly that 10001/73 = 137.

Lenstra’s Elliptic Curve Method

Given an integer n, we use the following steps to find factors of
n.

1. Check that n isn’t divisible by 2 or 3, and that n isn’t a
perfect power.

2. Choose random integers a, x, y between 1 and n.

3. Let b = y2 − x3 − ax (mod n).

4. Calculate D = gcd(4a3 + 27b2;n).

• If 1 < D < n, we are done.
• If D = 1, proceed to Step 5.
• If D = n, go back to Step 2 and choose a different
a.

5. Let E be the elliptic curve E : y2 = x3 + ax + b, and let
P = (x, y) ∈ E.

6. Choose a number k which is a product of small primes
raised to small powers. For example, a good choice is k =
lcm(2; 3; . . . ;B) for some integer B ≈ 100.

7. Compute kP (mod n).
8. If kP lies on E, go back to Step 2 and choose different

values for a, x, y.Otherwise, Step 7 yields a factor of n [19].

Example Consider n = 455839. Let E : y2 = x3 + 5x − 5,
P = (1, 1), k = 10! We begin by finding

2!P = 2P (mod n)

by using the algorithm of adding points on the elliptic curve

2P = (14,−53) (mod 455839)

4P = (259851, 116255) (mod 455839)

6P = (179685, 28708) (mod 455839)

Similarly, we find that 4!P, 5!P, . . . 7!P all lie on E, but com-
puting 8!P requires inverting 599 (mod n) which isn’t possi-
ble. This is because 599 is a factor of n, and we conclude that
n = 599 · 761.

Schoof’s Algorithm

This algorithm determines the number of points on an elliptic
curve over finite fields which we needed for the Elliptic Curve
Primality Test. Schoof’s main idea behind this algorithm is ba-
sed on the Hasse bound

|#E(Fq)− q − 1| ¬ 2
√
q

which estimates the number of points on an elliptic curve over
Fq up to a bound where q is a prime integer. The algorithm also
utilizes the Frobenius endomorphism which maps a point to its
q − th power:

π : (x, y)→ (xq, yq)

The Frobenius map has a characteristic equation

π2 − tπ + q = 0

where t = q+1−|E(Fq)|; from here we can solve for the number
of points, |E(Fq)|. This is done by computing several t values
modulo a set of prime numbers and then recovering the value of t
using the Chinese Remainder [20]. Probabilistic primality tests,
such as the Goldwasser-Kilian Elliptic Curve Primality Test, are
based on the above logarithms. Currently, pure cryptographic
research on elliptic curves often transforms into the search for
isogenies between them, which an important step towards post-
quantum cryptography.

Definition 0.5. (Isogeny). Let E1 and E2 be two elliptic curves.
An isogeny from E1 to E2 is a mapping of φ : E1 → E2 satisfying
φ(O) = O. Two elliptic curves E1 and E2 are isogenous if there
is an isogeny from E1 to E2 with φ(E1) 6= O.

Currently, interesting issues in this field include [21]

• Find an isogeny between two given elliptic curves.
• Determine the rational maps that define isogeny given its

kernel.
• Compute the image of a point through an isogeny specified

by its rational maps.
• Enumerate all elliptic curves l-isogenous to a given elliptic

curve E, where l is a given prime.

The above article presents a brief outline of existing solutions
in the field of factorization. The Lenstra factorization method
described in the article is much more efficient than the Pollard
method, which works in a finite body. The Lenstra method uses
elliptic curves, owing to which, with extremely inaccurate initial
selections, it provides a great deal of opportunity to re-select the
curve and a point on it [19]. Further work on this issue may be
based on the classification of elliptic curves and methods of their
selection to improve the performance of the Lenstra method.
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The above-mentioned Edwards curves are characterized by
relatively high speed of operations, but at present they are alre-
ady well-researched. The pioneers in this field (apart from Ha-
rold Edwards) are primarily Daniel Bernstein and Tanja Lange.
They are the authors of most of the literature on the applica-
tion of Edwards curves. Edwards curves have a very important
advantage over Weierstrass elliptic curves, which is the speed of
adding and doubling points. A disadvantage of Edwards elliptic
curve representation is the fact that not for every elliptic curve
written in the Weierstrass form one can find an Edwards curve
or a twisted Edwards curve, which would be isomorphic to it.
In Daniel Bernstein’s and Tanja Lange’s works there are still
Montgomery curves and Hessian curves [6] which are not yet as
well researched in literature as Edwards curves. Brenstein’s and
Lange’s studies under the Horizon 2020 program, whose result
is in this year’s publication entitled ”Montgomery curves and
the Montgomery ladder”, can attest to the potential of these
curves [22].

In the literature of the subject there are titles regarding the
use of the Sage system (formerly SAGE Software for Algebra and
Geometry Experimentation) [23], in the study of elliptic curves
and Edwards curves. The application of this software to the
study of the other families of curves mentioned above, in order to
find curves that provide high security guarantee and, at the same
time, have low computational costs, seems interesting. Progress
in this field could have a positive impact on the improvement
of security of the Internet of Things. In addition, the Sage tool
can be used to select elliptic curves to identify optimal families
in factorization processes.
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