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Abstract: The problem of classifying shifting-distorted objects is considered. The object model is the flat
monochrome 60×80 image of an enlarged capital letter from the English alphabet. A model of shifting-distorted
monochrome images with pixel distortion is developed. The classifier is 2-layer perceptron, whose faster operation
speed and poor performance on shifted objects stands against deep neural networks classifying shifted objects well
enough with significant delays. The perceptron performance is the maximal classification error percentage which
depends on two parameters. These ones are the perceptron single hidden layer size and pixel-to-shift standard
deviations ratio. The ratio is assumed to advance the perceptron in training on pixel-distorted shifted images in
order to classify shifting-distorted objects better. Thus, the problem of minimizing a function of two variables is
stated, wherein the function is the maximal classification error percentage. Statistically, the optimal hidden layer
neurons number is an integer from 390 to 400, and the optimal ratio should be set to a value from the segment
[0.01; 0.02]. For the accepted object model, these parameters made it possible to obtain a 2-layer perceptron
classifier whose performance is comparable to that one of deep learners. This is about 11.2% error rate and lo-
wer. Compared to the results obtained previously, the gain of this two-parameter optimization is at least about 6%.

Key words: shifting-distorted objects, 2-layer perceptron, perceptron single hidden layer size, pixel-to-shift
standard deviations ratio, maximal classification error percentage, optimization problem.

Shifting-distorted objects and their classification

In computer-controlling objects nothing can be centered to
compare the input object with the known one. Object decen-
tralization is usually called shift. N -dimensional object shift by
N ∈ N is described with N shift indicators, each indicator in
its dimension. One-dimensional objects are shifted along an axis
line (linear or curvilinear), and they are easily captured and clas-
sified. Three-dimensional objects, the highest-dimensional ob-
jects that have been visualized yet, are more difficult to be clas-
sified as their shift is of three indicators, and it is straightened
sometimes to calculate them from computer vision data [1–3].
Two-dimensional objects, being often visualized in monochrome
images, are relatively easy to expand their shift into horizon-
tal and vertical shift indicators by projections. These flat ob-
jects mostly are ordinary for their classification [2,4–6] whereas

N -dimensional objects by N∈ N\{1, 2} are projected in two-
dimensional space.

For machine classifiers, the shifting of objects is equivalent
to their distortion. If a flat object is presented by L×C matrix

B = [bik]L×C then matrix B̃ = [b̃ik]L×C of the shifting-distorted
object has a property that there is either

C∑
k=1

(
bi0k − b̃i0k

)
6= 0 (1)

or
L∑
i=1

(
bik0 − b̃ik0

)
6= 0 (2)

for at least one i0 ∈ {1, L} and one k0 ∈ {1, C}. Both inequali-
ties (1) and (2) are violated if the object by matrix B = [bik]L×C
is background, and all elements of this matrix are identical. For
example, this is white color in monochrome images when the
object elements are featured with black-and-white on the white
background; if the object is shifted, its horizontal and verti-
cal stripes, which were removed, become the background color;
for the object, being the background, shifting doesn’t change
it. Thus, the classification of shifting-distorted objects cannot
be fulfilled through object-by-object comparison, where mono-
chrome images are compared on pixel-by-pixel; even if the image
is shifted off the single pixel line (or column), most of other pi-
xels obtained new values, and matrices of the non-shifted image
and shifting-distorted image are quite different although visually
those two images are very similar.

Classifiers for shifted objects

Linear classifiers are not apt to recognize shifting distor-
tions [1, 6–9]. Neural networks with nonlinear activation func-
tions fit the classification of shifting-distorted objects after they
have been trained on samples from general totality [6,8–10]. Neo-
cognitrons and other hierarchical multilayered neural networks
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(deep neural networks) classify shifted objects well enough, but
with a bad delay, being scored in seconds and even minutes on
object medium and larger formats [11–13]. Perceptrons classify
shifting-distorted objects much worse. However, if 2-layer per-
ceptron could be trained on shifted objects, it would excel other
classifiers in operational speed. The matter just is in that 2-layer
perceptron cannot be trained even on shifting-distorted flat ob-
jects [7, 8, 10, 14] not speaking about N -dimensional objects by
N ∈ N\{1, 2}. Nevertheless, perceptrons are trained very effecti-
vely on feature-distorted objects, especially when feature distor-
tion is distributed normally [6,8,15]. Then, importing some part
of feature distortion into shifting-distorted objects, there might
be fixed a ratio between both types of distortions, at which 2-
layer perceptron would be trained successfully. Moreover, the
training process might be shortened by adjusting the single hid-
den layer size in this 2-layer perceptron.

The paper’s goal and tasks to be accomplished

The aim is to formalize those two parameters of the classifier
identification on the basis of 2-layer perceptron. Firstly, sizes of
2-layer perceptron are in the tuple 〈I,H, F 〉 by the input layer
size I = LC, the hidden layer size H ∈ [Hmin;Hmax]∩N and the
output layer F being equal to the number of classes. Untrained
2-layer perceptron P0(〈I,H, F 〉) is merely for classifying objects,
having I features. Secondly, the said ratio is [6]

r =
∂max
γmax

(3)

by maximal standard deviation ∂max in forming feature-distorted
objects and maximal standard deviation γmax in forming shifting-
distorted objects. In the training process the input of P0(〈I,H, F 〉)
is fed with the training set{

{B}Rd=1, {Z̃s}Ss=1
}

(4)

included R ∈ N replicas B = [bwc]LC×F of F non-distorted

(pure) representatives
{

Bc = [b〈c〉uv ]L×C
}F
c=1

and S ∈ N shares

of LC × F matrices {Z̃s}Ss=1 of distorted objects by R+ S tar-
gets as identity F × F matrices. Thus, the trained perceptron
P0(〈I,H, F 〉) is registered as

P
(
〈I,H, F 〉, 〈γmax, r〉, 〈R,S,Qpass〉

)
(5)

by the integer Qpass, showing how many times the training set
(4) has been passed through the perceptron. In registration (5)
γmax is fixed before getting started in training, and the ratio (3)

is determined with ∂max that varies from the lowest value ∂〈min〉max

up to the highest ∂〈max〉max . Varying ∂max generates a segment

[rmin; rmax] =

[
∂
〈min〉
max

γmax
;
∂
〈max〉
max

γmax

]
(6)

of tolerable ratios (3). Having put heuristically three integers
〈R,S,Qpass〉 there is the goal to optimize 2-layer perceptron (5)
by its two parameters H and r. The criterion of optimization is

minimizing classification error percentage p(H, r) in classifying
shifting-distorted objects of a definite type:

[H ∗ r∗] ∈ arg
(

min
[H r]∈{[Hmin;Hmax]∩N}×[rmin;rmax]

{p(H, r)}
)
.

(7)
To solve the problem (7) explicitly, the following tasks must be
accomplished to achieve the paper’s goal:

1. To define the object model, general totality and non-distorted
representatives of the fixed number of classes F .

2. To select a program environment, where 2-layer percep-
tron P0(〈I,H, F 〉) will be trained and perceptrons (5) will
be simulated for covering the product

{[Hmin;Hmax] ∩ N} × [rmin; rmax] (8)

over which the surface p(H, r) should be minimized in (7).
3. To state a model of shifting-distorted objects of the chosen

type blended with feature-distorted objects of that type.
4. To define boundaries Hmin and Hmax for the range of

hidden layer neurons number H.
5. To define boundaries rmin and rmax for the ratio (3)

range.
6. To run perceptrons (5) through the rectangle (8) of H

and ratio (3) values for evaluating the surface p(H, r) as
an averaged classification error percentage.

7. To minimize the surface p(H, r) over the rectangle (8),
reaching the optimal values of H and ratio (3).

8. To verify the problem’s (7) solution.
9. To reason whether the perceptron

P
(
〈I,H∗, F 〉, 〈γmax, r∗〉, 〈R,S,Qpass〉

)
(9)

performance might be optimized further.

Object model, general totality and pure
representatives of the classes

A one object model must be accepted. There is no need to
compose a big benchmark gallery of similar object models be-
cause a perceptron is indifferent to feature representation (which,
in this way, can be varied). The object may be flat, and its mo-
del may be a monochrome 60× 80 image of an enlarged English
alphabet capital letter [6]. Its medium format is good for obta-
ining results promptly. The general totality

G =
{
{Bc}26c=1, {B̃m}2

4800−26
m=1

}
(10)

is of 26 pure representatives {Bc = [b〈c〉uv ]60×80}26c=1 and the rest

24800 − 26 monochrome 60 × 80 images as 60 × 80 matrices

{B̃m}2
4800−26
m=1 . Each of 24800 elements in (10) is the matrix of

ones and zeros. While being tested, the trained classifier (5) or
(9) input is fed with samples from the general totality (10). In
training, the perceptron P0(〈I,H, F 〉) is fed with samples from
the extended general totality

E = G ∪ Z (11)
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by the set Z of 60× 80 matrices

Z̃ = G + ∂ · Ξ (12)

at a standard deviation ∂ in forming pixel-distorted monochrome
60× 80 images and 60× 80 matrix Ξ of values of normal variate
with zero expectation and unit variance, where G ∈ G. Obvio-
usly, the extended general totality (11) is infinite.

MATLAB function for training the perceptron

The oncoming investigations are connected with vector and
matrix algebra, whose buildups are within the program envi-
ronment MATLAB, in numerical and symbolical views. MA-
TLAB Neural Network Toolbox is one of the best for simula-
ting neural networks or constructing classifiers. To train 2-layer
perceptron P0(〈4800, H, 26〉) there is MATLAB function “tra-
ingda” [16, 17]. It is one of the fastest methods of backpropa-
gation algorithm [15,18–20] for training multilayer perceptrons.
While “traingda” works, the perceptron weight and bias values
are updated according to the gradient descent with adaptive
learning rate [20–22]. All the trainings are going to be driven
under the training MATLAB function “traingda”.

Model of shifting-distorted monochrome images with
pixel distortion

The c-th class pure representative Bc = [b〈c〉uv ]60×80 from (10)
is shifted for the s-th share in the training set (4) as follows. In
general, for L× C monochrome image horizontal shift is

x(γs) = ϕ(0.1Cγs · ςs) ·
1− sign(|ϕ(0.1Cγs · ςs)| − C)

2
+

+C · 1 + sign(|ϕ(0.1Cγs · ςs)| − C)
2

(13)

pixels and vertical shift is

y(γs) = ϕ(0.1Lγs · ζs) ·
1− sign(|ϕ(0.1Lγs · ζs)| − L)

2
+

+L · 1 + sign(|ϕ(0.1Lγs · ζs)| − L)
2

(14)

pixels, where standard deviation

γs =
γmax
S
· s for s = 1, S (15)

and function ϕ(α) rounds α to the nearest integer less than or
equal to α, where ςs and ζs are values of normal variate with
zero expectation and unit variance, raffled for the s-th share
independently.

The horizontal shift goes first, where matrix Bc = [b〈c〉uv ]L×C

changes into matrix Ac(s) = [a〈c〉uv (s)]L×C . For x(γs) > 0 the
elements of this intermediate matrix are

a〈c〉uv (s) = 1 for v = 1, x(γs) and a〈c〉uv (s) = b
〈c〉
ut

at t = v − x(γs) for v = x(γs) + 1, C ∀ u = 1, L.
(16)

For x(γs) < 0 those elements are

a〈c〉uv (s) = b
〈c〉
ut at t = v − x(γs) for v = 1, C + x(γs)

and a〈c〉uv (s) = 1 for v = C + x(γs) + 1, C ∀ u = 1, L.
(17)

For x(γs) = 0 the c-th image is not shifted horizontally:

a〈c〉uv (s) = b〈c〉uv ∀ u = 1, L and ∀ v = 1, C. (18)

The vertical shift goes second, right after the matrix Ac(s) =

[a〈c〉uv (s)]L×C has been formed. Here matrix Ac(s) = [a〈c〉uv (s)]L×C

changes into matrix Zc(s) = [z〈c〉uv (s)]L×C . For y(γs) > 0 the
elements of this shift final matrix are
z〈c〉uv (s) = a〈c〉rv (s) at r = u+ y(γs) for u = 1, L− y(γs)

and z〈c〉uv (s) = 1 for u = L− y(γs) + 1, L ∀ v = 1, C.
(19)

For y(γs) < 0 those elements are

z〈c〉uv (s) = 1 for u = 1,−y(γs) and z〈c〉uv (s) = a〈c〉rv (s)

at r = u+ y(γs) for u = −y(γs) + 1, L ∀ v = 1, C.
(20)

For y(γs) = 0 the c-th horizontally shifted image is not shifted
vertically:

z〈c〉uv (s) = a〈c〉uv (s) ∀ u = 1, L and ∀ v = 1, C. (21)

After having shifted with (13) – (21) by L = 60 and C = 80

all the pure representatives
{

Bc = [b〈c〉uv ]60×80
}26
c=1

separately,

the c-th shifted image as matrix Zc(s) = [z〈c〉uv (s)]60×80 is resha-
ped into 4800×1 matrix (column), and all these 26 columns are

concatenated horizontally into 4800×26 matrix Zs for s = 1, S.

Paralleling, pure representatives
{

Bc = [b〈c〉uv ]60×80
}26
c=1

, resha-

ped into 4800 × 1 column each, are concatenated horizontally

into 4800 × 26 matrix B. Then the training set (4) has 26 · S
reshaped elements

Z̃s = Zs + ∂s ·Ωs for s = 1, S (22)

from the general totality (11), where standard deviation

∂s =
∂max
S
· s for s = 1, S (23)

is multiplied by 4800× 26 matrix Ωs of values of normal variate
with zero expectation and unit variance. Afterwards the training
set (4), included R pure and S shifting-distorted monochrome
images with pixel distortion (22) for each class, feeds (passing
through) the perceptron P0(〈4800, H, 26〉) for Qpass times.

Boundaries for the range of hidden layer neurons
number

Commonly, the perceptron for a classification problem is
trained for three stages: training on pure representatives, tra-
ining on noised representatives, and training on pure represen-
tatives again to make sure the trained perceptron didn’t lose
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the ability to recognize pure representatives. In the first stage,
the perceptron P0(〈4800, H, 26〉) is trained on the single replica

B = [bwc]4800×26. In the second stage, it is trained on the tra-
ining set (4). Finally, in the third stage, the perceptron (5)

P (〈4800, H, 26〉, 〈γmax, r〉, 〈R,S,Qpass〉) (24)

is re-trained on the single replica B = [bwc]4800×26. The integer
range [Hmin;Hmax]∩N of hidden layer neurons number H sho-
uld be defined with boundaries Hmin and Hmax on the training
quality criterion. ByH < Hmin the perceptron P0(〈4800, H, 26〉)
or (24) is trained slower than ordinarily or cannot be trained at
all, starting from the first training stage. By H > Hmax there is
a risk of getting the overtrained perceptron (24) in the second
training stage, or the perceptron P0(〈4800, H, 26〉) training pro-
cess may hang in the first training stage. Empirically, for the
problem of classifying shifting-distorted monochrome images by
their shift intensity in (13) – (21), there are most likely bo-
undaries Hmin = 200 and Hmax = 350 independently of the
pixel-to-shift standard deviations ratio (3) with an appropriate
maximal standard deviation γmax.

Boundaries for the range of pixel-to-shift standard
deviations ratio

Here, regarding (13) – (21), an appropriate maximal stan-
dard deviation for shift distortion is γmax = 1. Let the tuple

〈R,S,Qpass〉 empirically be 〈2, 8, 240〉. The lowest value ∂〈min〉max =
0.01 because in the case ∂max < 0.01 the second training stage
of the perceptron P0(〈4800, H, 26〉) flows very slow. The case
∂max > 1 makes the second training stage be completed quic-
ker, but the perceptron (24)

P (〈4800, H, 26〉, 〈1, r〉, 〈2, 8, 240〉) (25)

poor performance becomes unacceptable. So, boundaries

rmin =
∂
〈min〉
max

γmax
= 0.01 and rmax =

∂
〈max〉
max

γmax
= 1 enclose the

segment [0.01; 1] of pixel-to-shift standard deviations ratio.

Running through the rectangle (8)

For solving the problem (7)

[H ∗ r∗] ∈ arg
(

min
[H r]∈{[200;350]∩N}×[0.01;1]

{p(H, r)}
)

(26)

the perceptron (25) shall be run through batch testing on the
rectangle (8), which makes it possible to evaluate the surface
p(H, r) as either an averaged classification error percentage on
(8) or a maximal classification error percentage on (8). The ma-
ximal classification error percentage is presumed to ensue from
maximal shift distortion. While being tested, the input of the
perceptron (25) is fed with shifting-distorted monochrome
60×80 images, formed by shift standard deviation γ ∈ [0; γmax] =
[0; 1]. They are fed 400 batches from the general totality (10),
where each batch has 26 elements, by one representative of every

class. The classification error percentage by shift standard de-
viation γ ∈ [0; 1] is p(H, r, γ). This is calculated as

p(H, r, γ) =
q(H, r, γ)
400 · 26

· 100 =
q(H, r, γ)

104

by the number q(H, r, γ) of classification errors, scored at para-
meters {H, r, γ}. The averaged classification error percentage

p(H, r) =

∫ 1
0

p(H, r, γ)dγ (27)

can be numerically evaluated on the subset {0.1j}10j=0 ⊂ [0; 1] as

p(H, r) ≈ 1
11

10∑
j=0

p(H, r, 0.1j) (28)

for H ∈ [200; 350] ∩ N and r ∈ [0.01; 1]. The maximal classifica-
tion error percentage is just

p(H, r) = p(H, r, γmax) = p(H, r, 1). (29)

It is clear that the segment [0.01; 1] must be sampled. Let
the sampling steps be 0.01 and 0.1, substituting that segment
with the 19-elemented subset{
{0.01 + 0.01i}9i=1, {0.1 + 0.1i}9i=1

}
⊂ [rmin; rmax] = [0.01; 1].

(30)
Besides, the hidden layer size can be run with the step equal to
10 neurons. Hence, instead of the rectangular (8)

{[200; 350] ∩ N} × [0.01; 1] (31)

being actually the striped rectangular owing to one integer side
(hidden layer neurons number), there is a lattice, constituted

with set {200 + 10i}15i=0 and subset in (30):{
{200 + 10i}15i=0

}
×
{
{0.01 + 0.01i}9i=0, {0.1 + 0.1i}9i=0

}
⊂

⊂ {[200; 350] ∩ N} × [0.01; 1].
(32)

Fig. 1 shows the average of four evaluations of the surface
p(H, r) on lattice (32). Each evaluation has been made up of
304 points of lattice (32), where every point is the averaged
classification error percentage of perceptron (25), for

H ∈ {200 + 10i}15i=0

and

r ∈
{
{0.01 + 0.01i}9i=0, {0.1 + 0.1i}9i=0

}
.

Note, that for plotting those four meshes 1216 perceptrons have
been tested.

Naturally, the global minimum of the surface p(H, r) can be
found only numerically. Fig. 1 can’t help with it, unless to watch
a domain within the rectangle (31), and this domain shall have
the minimum point. Therefore, the domain shall be re-sampled
to find the minimum point by the higher accuracy.
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Fig. 1: The average of four evaluations of the surface  ,p H r  on 304-point lattice (32) and its single 
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Fig. 1: The average of four evaluations of the surface p(H, r) on 304-point
lattice (32) and its single variable profiles.

Maximal classification error percentage minimization
by the optimal point (26)

At first glance, Figure 1 hints at that the surface p(H, r) mi-
nimum is reached at about a point, enclosed within the domain

{[270; 350] ∩N} × [0.01; 0.2] ⊂ {[200; 350] ∩N} × [0.01; 1]. (33)

Without re-sampling the subsegments, domain (33) is substitu-
ted with the finer lattice{

{270 + 10i}8i=0
}
×
{
{0.01 + 0.01i}9i=0, 0.2

}
⊂

⊂ {[270; 350] ∩ N} × [0.01; 0.2].
(34)

As the averaged classification error percentage has decreased si-
gnificantly, the maximal classification error percentage is better
to use. Fig. 2 shows the average of 20 re-evaluations of the sur-
face p(H, r) by (29) on 99-point lattice (34), where every point is
the maximal classification error percentage of perceptron (25),
for

H ∈ {270 + 10i}8i=0

and

r ∈
{
{0.01 + 0.01i}9i=0, 0.2

}
.

 

Fig. 2: The average of 20 evaluations of surface (29) on 99-point lattice (34) and its single variable profiles 
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Fig. 2: The average of 20 evaluations of surface (29) on 99-point lattice
(34) and its single variable profiles.

For plotting those 20 meshes 1980 perceptrons have been tested,
including those 396 ones from Fig. 1.

It is seen clearly from Fig. 2 that

r∗ ∈ {0.01i}7i=1 (35)

but H∗ > 340. This is why the third bunch of evaluations is
going to be made on the lattice

{
{350+10i}4i=0

}
×
{
{0.01i}7i=1

}
⊂ {[350; 390]∩N}× [0.01; 0.7]

(36)
and number of evaluations is doubled. Fig. 3 shows the average of
40 evaluations of surface (29) on 35-point lattice (36). For plot-
ting those 40 meshes there have been tested 1400 perceptrons.
Here, only 140 perceptrons from Fig. 2 have been included which
concerned the point H = 350.
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Fig. 3: The average of 40 evaluations of surface (29) on 35-point lattice (36) and its single variable profiles 
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Fig. 3: The average of 40 evaluations of surface (29) on 35-point lattice
(36) and its single variable profiles.

The H axis profile of the mesh in Fig. 3 shows that the case
of H∗ > 390 cannot be excluded. This implies the H axis should
be extended to the right. A decision on the ratio (3) is closer –
only three points

{0.01, 0.02, 0.03}

remain to re-evaluate. Hence, the fourth bunch of evaluations is
on the lattice

{
{370+10i}4i=0

}
×
{
{0.01i}3i=1

}
⊂ {[370; 410]∩N}×[0.01; 0.03]

(37)
with the number of evaluations doubled more. Fig. 4, showing
the average of 80 evaluations of surface (29) on 15-point lattice
(37), makes an evaluation of global minimum confusing. Altho-
ugh for plotting those 80 meshes 1200 perceptrons have been
tested, including 360 perceptrons from Fig. 3, the high variance
of classification error percentage has not decreased. Nonetheless,
the final decision on what the solution (26) is can be made using
statistics of those 80 meshes and other ones in Figures 1, 2, and
3. For instance, a number of cases where

p(H, r) < p0 (38)

and
p(H, r) > p1 (39)

can be counted, where p0 and p1 are desired (tolerable) CEP
and undesired (intolerable) CEP, respectively.
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Fig. 4: The average of 80 evaluations of surface (29) on 15-point lattice
(37) and its single variable profiles.

Denote by cH(p0) the most frequent hidden layer neurons
number for (38), and denote by cr(p0) the most frequent ra-
tio for (38). If p0 ∈ [3; 3.5] for the averaged classification error
percentage, solely cH(p0) = 350 and cr(p0) = 0.01 (though,
except a case with cr(3.23) = 0.02), although cH(2.52) = 310
and cr(2.52) = 0.05 (related to Fig. 1). Denote by uH(p1) the
less frequent hidden layer neurons number for (39), and denote
by ur(p1) the less frequent ratio for (39), the results are much
the same.

If p ∈ [11.5; 13.5] for the maximal classification error percen-
tage, solely cH(p0) = 350 and cr(p0) 6= 0.01 (related to Fig. 2),
where cr(p0) = 0.02 in over 77% of all cases. Also uH(p1) = 350
in over 82% of all cases, but ur(p1) = 0.07 in nearly every third

151



Romanuke V.: Optimizing 2-Layer Perceptron Neurons Number and. . . Pol. J. Appl. Sci., 2017, 3, 146-154

case. Related to Fig. 3, solely cH(p0) = 390 and cr(p0) = 0.01 in
nearly two from three cases, but uH(p1) = 370 at 71% rate
and ur(p1) = 0.02 at 69% rate. Finally, relating to Fig. 4,
cr(p0) = 0.02 at 70% rate and ur(p1) = 0.02 at 69% rate, but
cH(p0) = 410 stands at 69% rate against uH(p1) = 400 at 47%
rate.

Now it is clearer that

r∗ ∈ {0.01, 0.02}. (40)

It might have seemed that the most appropriate hidden layer
neurons number is 410, but there are four cases among those 80
ones with H = 410 when the training process just fully failed,
where the maximal classification error percentage is equal to
2500
26 . The same fail concerned a single perceptron with H = 400.

Therefore,

H∗ ∈ {[390; 400] ∩ N}. (41)

Each of memberships (40) and (41) is a statistical decision.
However, an evaluation of the global minimum of the surface
p(H, r) on lattice (37) could be the point

[H ∗ r∗] = [400 0.02] (42)

by a supplementary criterion. This criterion is the training pro-
cess duration, which is statistically the shortest for point (42).
Perceptron

P (〈4800, 400, 26〉, 〈1, 0.02〉, 〈2, 8, 240〉) (43)

at point (42) performs at

p(400, 0.02) ≈ 13.2994

on average. The best perceptron (43) has maximal classification
error percentage

p(400, 0.02) ≈ 11.0192.

Perceptrons

P (〈4800, 410, 26〉, 〈1, 0.03〉, 〈2, 8, 240〉) (44)

and
P (〈4800, 390, 26〉, 〈1, 0.01〉, 〈2, 8, 240〉) (45)

have the best performance

p(410, 0.03) = p(390, 0.01) = 10.625,

where just one of them solves the problem (7) if the memberships
(40) and (41) are regarded as the solution. Perceptron

P (〈4800, 390, 26〉, 〈1, 0.02〉, 〈2, 8, 240〉) (46)

performs at 11% error rate. Along with three perceptrons (43),
(45), (46), being the problem (7) solutions, and perceptron (44)
with 10.625% error rate, there are another three having very low
error rates:

p(390, 0.03) ≈ 11.0481,

p(410, 0.02) ≈ 11.0385,

p(410, 0.03) ≈ 10.9038,

where the last statement relates to another perceptron (44).

Verification of the problem (7) solution

According to the memberships (40) and (41), the problem
(7) solution is stated as

[H ∗ r∗] ∈ {[390; 400] ∩ N} × {[0.01; 0.02]}. (47)

For verification of the problem (7) solution (47), the best per-
ceptrons (43), (45), (46) shall be re-tested at shift standard
deviation γ ∈ [0; 1] in shifting-distorted monochrome 60 × 80
images. The number of re-testing batches is 25 times increased
(10,000 batches). Taken three testings by 10,000 batches each,
the averaged polylines of functions p(400, 0.02, γ), p(390, 0.01, γ),

p(390, 0.02, γ) by γ ∈{0.1j}10j=0 are shown in Fig. 5 against the
background of those four ones reflecting performance of non-
optimal perceptrons although close to optimum. Disclosures of
those 10,000-batched tests are in Fig. 6.
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Fig. 5: Polylines of functions p(400, 0.02, γ), p(390, 0.01, γ), p(390, 0.02, γ)
for verifying the problem (7) solution (47); polylines of func-
tions p(390, 0.03, γ) and p(410, 0.02, γ), and two polylines of function
p(410, 0.03, γ) representing two different perceptrons (44) are in the back-
ground for comparison, where (*) corresponds to the perceptron tested
previously with its result p(410, 0.03) ≈ 10.9038, and (**) corresponds
to the perceptron tested previously with its result p(410, 0.03) ≈ 10.625;
each polyline is the average of three 10,000-batched tests.

Perceptron (43) reveals itself in both Fig. 5 and Fig. 6 that
it has the best performance, which is

p(400, 0.02) ≈ 11.1228

now, averaged over three 10,000-batched tests. Every single
10,000-batched testing gives the same result, i.e. the optima-
lity of parameters (42) is confirmed. Note, that the performan-
ces of the rest classifiers are a little worse than expected after
400-batched testing (this happened because averaging over the
400-batched testings is very rough). That magnificent 10.625%
error rate is not reached. However, the gain of this two-parameter
optimization is at least about 6% comparing to results obtained
in [3, 6, 8, 13].

It is worth pointing out that a few tests showed that an
11% error rate can be transcended at H > 400. Moreover, two
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Fig. 6: Disclosures of those 10,000-batched tests whose averaged polylines are in Figure 5 (designations of 

line markers are the same) 
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Fig. 6: Disclosures of those 10,000-batched tests whose averaged polylines
are in Fig. 5 (designations of line markers are the same).

of those three perceptrons by H = 410 in Fig. 5 have a perfor-
mance that does not exceed 11.3% error rate. Nevertheless, if
the hidden layer neurons number is increased to starting off at
point H > 400, the likelihood of the training process full fail in-
creases. Besides, operation speed of 2-layer perceptron becomes
lower as its single hidden layer size is increased. Here “opera-
tion speed” is treated in the sense of classifying multiple huge
streams of objects (not a single object), where every superfluous
byte weighs as a gigabyte. This is why H = 400. So, taking into
consideration the results in Fig. 5 and the disclosures in Fig. 6
along with the restricted single hidden layer size, the problem
(7) solution (47) has been verified and validated.

Reasoning into further 2-layer perceptron performance
optimization

When another problem of classifying shifting-distorted ob-
jects is put forward, say, in another format of images or with
non-imaged objects, then the hidden layer neurons number and
the ratio (3) are optimized for 2-layer perceptron in a similar
way to those first-numbered eight items, formulated as tasks for
this paper’s investigation. Furthermore, a 2-layer perceptron can
be optimized by those items and for N -dimensional objects by
N ∈ N\{1, 2} without projecting them flat. This is because the
classifiers on perceptrons use the line-up (column) of object fe-
atures, and whatever the object with a finite feature number is,

its N -dimensional matrix B = [bj ]F of the format F = N
d=1Ld

and subscript J is reshaped into
(∏N

d=1 Ld

)
× 1 column. Con-

sequently, any color images shift problem may also be solved on
2-layer perceptron classifiers. For objects, whose number of fe-
atures is close to (or comparable to) 4800 and number of classes
is about 26, the solution (47) remains relevant. In addition, the
corresponding best perceptron performance will be nearly the
same as the perceptron (43) performance. If an even number
of features is about a few thousands, the optimal single hid-

den layer size should be set to an integer from 390 to 400, and
the optimal ratio (3) should be set to a value from the segment
[0.01; 0.02]. The ratio is far less sensitive to changes in number
of features and number of classes.

The perceptron (41) performance could have been optimized
deeper if the integers in the tuple 〈R,S,Qpass〉 hadn’t been put
empirically. To optimize them along with H and the ratio (3),
however, wouldn’t have been rational as that would have given
a minimization problem of the hypersurface of five variables,
what is always too hard, especially when this hypersurface must
be evaluated (on five-dimensional line-pointed parallelepiped!)
before [23,24]. Instead of that the perceptron (9)

P (〈4800, 400, 26〉, 〈1, 0.02〉, 〈R,S,Qpass〉)

performance might be optimized further, where the hypersurface
of three variables in the tuple 〈R,S,Qpass〉) should be minimized
on integer parallelepiped. After such optimization, all points in
(47) may come off the optimum, but the perceptron performance
is not presumed to change much to make the investigator re-
optimize the perceptron neurons number and the ratio (3).
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