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Abstract: The paper presents the application of algebraic geometry to cryptography. In the first part we cover
some basic issues, such as elliptic curves, then present the various cryptographic systems based on elliptic curves.
At the end, we show some examples of applications of these methods to protect the information used in the
modern world.
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Introduction

For millennia, rulers needed efficient and secure com-
munication systems to efficiently govern their countries and
command their armies. The danger of intercepting messages
by unauthorized persons was the main motive for devising
ciphers and codes. The ability to encrypt successfully or
to break ciphers has often influenced the course of events.
Often cited an example is the story of Mary Stuart, where
encryption was of little help, because the messenger was a
double agent, who passed all the correspondence (including
the encryption key) to the minister of the English Court,
which eventually led to the beheading of the author.

The beginnings of cryptography date back to ancient
times. The ancient Egyptians encrypted their hieroglyphics
and the ancient Hebrews also encrypted some words in their
texts. One of the most famous ways to encrypt information
is the Caesar cipher.

A lot of encryption systems that use mechanical devi-
ces were developed in the first half of the twentieth century.
These systems were used at many times and even during the
Second World War. Some of them were effectively broken,
such as the German Enigma system which was broken by
three Polish mathematicians Marian Rejewski, Jerzy Ró-
życki and Henryk Zygalski.

For centuries, the language barrier was an important
factor supporting the power of ciphers. Due to its specifi-
city, none of the codes based on the languages of Native
Americans has ever been broken, even though US troops
often used such codes, especially during the war with Ja-
pan [1].

Review of the literature

The development of electronics in the twentieth century
provided tremendous opportunities to perform computing

Fig. 1: Polish mathematicians, Marian Rejewski, Jerzy Rozycki and Hen-
ryk Zygalski.

operations at a relatively low cost, which contributed to
the fast development in the field of designing encryption
systems.

For several years, the asymmetric cryptography tech-
nique, also called elliptic curve cryptography (ECC), has
enjoyed great popularity. The security of ECC is based on
the computational complexity of discrete logarithms on el-
liptic curves (ECDLP = Elliptic Curve Discrete Logarithm
Problem). Currently, it is the use of conic curve cryptogra-
phy which is of special interest and importance in order
to increase the protection of information systems based on
computationally difficult problems.

However, more and more advanced work on the con-
struction of quantum computers indicates the need for a
new approach to information security. The currently me-
thods are based on computationally difficult problems, such
as the problem of factorization of large numbers or the di-
screte logarithm problem. These problems can be handled
very easily by quantum computers. Individuals and insti-
tutions involved in cryptography have a duty today to seek
new methods of information protection, which will continue
to be effective in the era of quantum computers. Particu-
larly noteworthy, therefore, are the so-called post-quantum
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algorithms which are likely to be found in applications in
the era of quantum computers. They are based on, inter
alia, the hash function based on the hash table (hash–based
cryptography), line codes (code–based cryptography), lat-
tice theory (lattice–based cryptography), and polynomials
of the second degree of multiple variables (multivariate–
quadratic equations cryptography).

The methods based on lattice theory, which has nume-
rous applications in quantum physics being the „older si-
ster” of quantum computing, appear to be particularly pro-
mising. The arrival of quantum computers will also mark
the end of modern cryptography based on computationally
difficult problems, which is why the development of qu-
antum cryptography is so important for the protection of
transmission and collection of information in the future.

Elliptic curves

The name of elliptic curves which appears in cryptogra-
phy is slightly misleading. It is connected with the problem
of determining the arc length of an ellipse using the so-
called elliptic integral of the second kind and cannot be
expressed using elementary functions. Functions inverse to
elliptic integrals are called elliptic functions [2].

Example 1: One of elliptic integrals is the function:

u =
∫ ∞
y

dt√
4t3 − g2t− g3

. (1)

A function inverse to it is the Weierstrass elliptical
function y = ℘(u), which satisfies the dependence:

℘′(u)2 = 4℘(u)3 − g2℘(u)− g3.

The elliptic function satisfies the equation of a curve. It
is for this reason that this curve is called an elliptic curve [2].

Elliptic curves in Euclidean spaces

Let us call the elliptic curve in R2 as a set of solutions
of the Weierstrass equation:

y2 = x3 + ax+ b, (2)

together with a point at infinity O where the constants a,b
meet the additional condition: 4a3 +27b2 6= 0. We mark the
set of solutions as E(R). Thus, the elliptic curve is defined
by the equation:

E(R) =
{

(x, y) ∈ R2 : y2 = x3 + ax+ b
}
∪ {O} . (3)

The condition ∆E 6= 0 where ∆E = −16·(4a3+27b2) means

that the polynomial x3 + ax + b does not have multiple
roots [3, 4].

The operation of „addition”

It is on elliptic curves that we can define operations of
„addition”. Let us take two different points M1 and M2

lying on the elliptic curve. In this case, the straight line
passing through them intersects the curve at exactly three
different points M1, M2, M . We assume that the result of
adding will be point M3 of the curve symmetrical to M ,
relative to the axis of abscissae.

Fig. 2: Addition for M1 6= M2.

Fig. 3: Addition for M1 = M2.

In the case when M1 = M2, we are considering the tan-
gent to the curve at point M1, and repeat the above proce-
dure [2]. We encounter a problem when we want to add two
points symmetrical with respect to the axis of abscissae, or
double the point lying additionally on the axis of abscissae.

12



Pol. J. Appl. Sci., 2016, 2, 11-15 Maleszewski W.: Algebraic Geometry in Cryptography at. . .

Then, a relevant straight line assumes the position parallel
to the axis of ordinates and does not intersect the elliptic
curve at any other point. The solution is to introduce point
O called „a point at infinity” [5].

The algorithm of adding points on the elliptic
curve (algebraic approach)

Let E(R) be an elliptic curve, M1,M2 ∈ E(R) where
M1 = (x1, y1), M2 = (x2, y2), and O is „a point at infinity”,
then:

• ∀i,j∈{1,2}(Mi ∈ O ⇒Mi +Mj = Mj),
• ∀i,j∈{1,2}(Mi /∈ O ∧Mj /∈ O ∧ xi 6= xj ⇒Mi +Mj =

(x3, y3)),
where 

x3 =
(
y2 − y1

x2 − x1

)2

− x1 − x2,

y3 = −y1 +
(
y2 − y1

x2 − x1

)2

(x1 − x3),

• ∀i,j∈{1,2}(Mi /∈ O∧xi=xj∧yi=−yj ⇒Mi+Mj=O),
• ∀i,j∈{1,2}(Mi /∈ O∧Mi = Mj ⇒Mi+Mj = (x3, y3)),

where 
x3 =

(
3x2

1 + a

2y1

)2

− 2x1,

y3 = −y1 +
(

3x2
1 + a

2y1

)2

(x1 − x3).

Remark 1: It is easy to show that along with the afore-
mentioned operation of „addition”, and „a point at
infinity”, elliptic curve E(R) is an Abelian group.

The use of elliptic curves in the context of finite fields
changes their appearance (in finite fields the diagram ceases
to be a continuous curve and assumes the form of a set of
points; this is a consequence of adopting a domain which is
a discrete set). The method of the additional algorithm de-
scribed above does not change, the only modification being
that we operate in a finite field.

Example 2: Let E be the elliptic curve y2 = x3 + 3x over
the field F5 = (Z5,+ (mod 5), · (mod 5)) . Then, cu-
rve E consists of 10 points:

E(F5) = {OE , (0, 0), (1, 2), (1, 3), (2, 2), (2, 3),

(3, 1), (3, 4), (4, 1), (4, 4)}.

Let us note that the points beyond point (0, 0) still re-
tain their horizontal symmetry.

Fig. 4: The elliptic curve y2 = x3 + 3x over field F5.

Practical applications of elliptic curves

Starting around 1985, the theory of elliptic curves was ap-
plied to deal with a variety of cryptographic problems such
as the partition of natural numbers into prime factors, te-
sts examining whether a number is a prime number or a
structure of different cryptosystems. The groups of points
of elliptic curves over finite fields are similar to the mul-
tiplicative groups of finite fields. ECC algorithms provide
security comparable to that of RSA with less complex keys.
This provides much more efficient encryption compared to
RSA, which is considered too slow and requires considera-
ble computing power.

The discrete logarithm problem

One may wonder about the difficulty of finding for cer-
tain points G,H ∈ E(K) such an integer n that:

G+G+ . . .+G︸ ︷︷ ︸
n−1 additions in E(K)

= [n]G = H.

This is the so-called discrete logarithm problem in the
group of elliptic curve points [3]. We designate the number
sought as n = logGH and say that n is a discrete elliptic
logarithm with base G from H, on the basis of knowledge
of G and H, the opponent must designate n, that is, solve
a seemingly simple equation, whose complexity stems from
the definition of the operation of addition of elliptic curve
points, together with the modular arithmetic in field Fp.

In fact, this issue is a problem which is extremely difficult
computationally (at least for large p) [6]. In the case of
some curves, this problem can be effectively reduced to the
discrete logarithm problem in the multiplicative group of a
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finite field. Therefore, only those curves that meet certain
conditions regarding security are selected for cryptographic
applications.

The Diffie-Hellman key exchange

A classic example of a protocol of exchanging encryp-
tion keys is the Diffie–Hellman key exchange that allows two
parties to establish a secret key in an unsecured network. It
does not require the knowledge of any classified information
or the presence of a trusted „third party”. This protocol
was the first practical solution to the problem of key di-
stribution. It is resistant to passive attacks but vulnerable
to active ones due to the lack of transmitted information
authentication keys. The security of this protocol is based
on the complexity of the discrete logarithm problem [7].

The ECIES encryption scheme

The Elliptic Curve Integrated Encryption Scheme
(ECIES) is a static version of the Diffie–Hellman key
exchange, in which the exchange of the key does not take
place with the active participation of both parties to the
protocol. In practice, it comes down to the fact that one of
the parties provides their public key to all who would like
to exchange information with them in a secure manner.
The algorithm is popular mainly because of the very high
prevalence of use of the Diffie–Hellman protocol. All sys-
tems implementing the ECDH (Elliptic Curve Diffie-Hellman)
protocol can be adapted to support ECIES encryption,
which is important in systems with limited storage reso-
urces [2].

ElGamal digital signature

A mechanism to ensure the authenticity of transmitted
data was presented in 1985 by ElGamal. At the core of this
algorithm’s operation lies the discrete logarithm problem.
The algorithm allows the encryption and support of digital
signatures.

Description of the algorithm:

1. Select such a large enough prime number p, that the
calculation of the discrete logarithm is virtually im-
possible.

2. Select integer 0 < a < p− 1 and number g; and then
calculate b ≡ ga (mod p); numbers {b, g, p} constitute
the public key, whereas numbers {a, g, p} the private
key.

3. In order to encrypt message M ; we select random
number k relatively prime to number p− 1; and then
calculate c1 ≡ gk (mod p) and c2 ≡ M · bk (mod p).
The pair of numbers c1 and c2 creates a cryptogram,
which is longer than the plain text.

4. Decryption consists in calculating:

M = c2(ca1)−1 (mod p).

Example 3: Let p = 47 and g = 5. Select a = 20 and
calculate

b = ga = 520 ≡ 3 (mod 47).

Thus, numbers {3, 5, 47} constitute the public key
and numbers {20, 5, 47} are the private key.
Encryption: Let the message be M = 38. Select such
k = 11 that GCD(38, 11) = 1 (this number is not
disclosed), then

c1 = 511 ≡ 13 (mod 47),

and

c2 = 38 · 311 ≡ 11 (mod 47).

Decryption:

M = c2 · (ca1)−1 = 11 · 12 ≡ 38 (mod 47).

A special representative of the ElGamal signature is the
Digital Signature Algorithm (DSA), which constitutes the
basis of the Digital Signature Standard (DSS). Elliptic cu-
rve cryptography is also based on the concept of the El-
Gamal algorithm. In this case, instead of the multiplicative
group of field Zp we use the group of points on the elliptic
curve.

Security requirements

Security guaranteed by the systems in question is con-
nected with existing algorithms serving to determine the
discrete logarithm on elliptic curves. The best-known al-
gorithms, which can be solved or which can significantly
simplify the problem, include Pollard’s rho algorithm and
the Pohlig-Hellman algorithm among others [2].

Summary

As already mentioned at the beginning of the article,
new methods are needed to increase the security of infor-
mation transmission. In the world using modern technology,
studies in the field of number theory and algebraic geometry
constitute now a mathematical foundation and, therefore,
a key challenge for modern cryptography [4]. Another very
important area of research includes methods that guaran-
tee the security of information in times of availability of
quantum computers [8].
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