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Abstract: The photoacoustic (PA) spectra of the red fruit Pyracantha Coccinea sample, prepared in a thick
film form were investigated and analysed. Several absorption peaks were registered in the visible range of
electromagnetic radiation while the most intense was at 548 nm. The obtained photoacoustic spectra were
compared with the spectra of leaves, sea creatures and the human skin. There are significant similarities which
confirm that similar bioorganic compounds are present in any living system. In particular, the obtained results
confirm experimentally that the red fruits of Pyracantha Coccinea intensively absorbed UV solar rays and had
several additional absorption bands in the visible and near infrared regions, i.e. in that part of the solar spectrum
for which water is almost transparent.
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Introduction

Photoacoustic (PA) spectroscopy (PAS) is one of the
most useful techniques both for research purposes and ap-
plication, especially for materials related to the living mat-
ter, e.g. [1-11]. PAS allows light-induced heat production
to be detected due to the non-radiative deactivation of li-
ght excitation. It is very useful in photosynthesis research
to measure energy conversion and storage, and in molecular
structure and interaction studies as well as oxygen evolution
in photosynthetic systems [12]. PAS is also used to detect
and monitor ethylene concentrations emitted by urban pu-
blic transport which is essential for human health [13]. A
recent application of this technique is PA imaging which is
a hybrid technology that images the internal distribution
of the optical energy deposition in biological tissues [14-
16]. One of the more interesting areas of the PAS research
is the study of radiation in the 540 to 580 nm range which,
in many cases, gives for instance the red color of blood, the
color of leaves and fruits. The human blood produces the
PA peak at about 550 nm [1] and the red leaf at 544 nm
[11]. It is well known that human blood contains complexes
with many transition ions, for example, with iron (transfer-

rin) and copper (ceruloplasmine). The electron paramagne-
tic resonance study of ceruloplasmene has shown that the
disease cancer has an impact on the electronic structure of
copper complexes in the blood [17]. The question is whether
the above transition group ions complexes do not occur in
the case of red leaves and fruits. In our previous work we
have proposed the existence of a channel selector mecha-
nism [18, 19]. This is because the wave functions of 3d ions
extend over the entire molecule; there is one shape in the
ground state and another in the excited state. This could
have far-reaching consequences on pathological changes of
living beings and their development.

The aim of this report is to investigate the tissues of
the red fruit of Pyracantha Coccinea in the visible ranges
of electromagnetic radiation by PAS and comparison with
corresponding data obtained for tissues of red Ficus Benja-
mina leaves, Pyracantha Coccinea, Asterias Rubens, Trun-
culariopsis Trunculus, spermidine, and the human skin.

Experimental

The red fruit of Pyracantha Coccinea was collected in
November 2013 at the University of Athens campus. The
PA spectra were measured using a thick film sample of the
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Pyracantha Coccinea tissue at room temperature using co-
nventional equipment and methodology, as described in [7,
20].

Results and Discussion

Fig. 1 presents a Pyracantha Coccinea plant with red
fruits within its green leaves. The obtained PA spectrum of
the red fruit of Pyracantha Coccinea is presented in Fig. 2.
Similarly as for the red leaf, very intense PA lines due to
n→p* and n→n* transitions connected with charge transfer
are dominating the spectrum below 350 nm [11]. In the vi-
sible range the peaks near 369, 399, 412, 432, 506, 548, 574,
631 and 664 nm are visible where the most intense peak is at
548 nm. The absorption band at 664 nm could be related to
photosynthesis [21], analogous as for red Ficus Benjamina
leaves [11]. The effects of visible light on the skin produ-
ced peaks at the following wavelengths: 405 nm, 410 nm,
504 nm, 538 nm, 576 nm and 630 nm [22]. Absorption in
this region of electromagnetic radiation was also observed
in blood [23]. Table 1 shows PAS peaks observed in samples
from different plant and animal organisms and (for compa-
rison) from human skin. The PA absorption attributed to
photosynthesis is not observed in animal organisms.
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Fig. 2  

 

 

Fig. 1: The Pyracantha Coccinea plant at Athens University Campus

Inside the sample, radiative and non-radiative processes
related to electron transitions on molecular levels can cre-
ate phonons. Electronic excited states are unstable and the
excess energy is transferred to other excited states and to
the vibrating environment after this. It could cause thermal
processes which are very important in complex molecules in
the living matter. As transition metal complexes, e.g. con-
taining copper(II), iron(II) or iron(III), are present in the
living matter and play a crucial role there, they are stu-
died intensively. The wavelength values, λ, corresponding

Table 1: PAS peaks observed in samples from different plant and animal
organisms and (for comparison) in human skin

Table 1. PAS peaks observed in samples from different plant and animal organisms and (for 

comparison) in human skin. 

Sample Peaks [nm] Reference 

The skin 405 410 504 538 576 630   [22] 

Ficus Benjamina 398 414 504 544 578 635 [10] 

Asterias Rubens 397 415 508 548 570 620  [24] 

Trunculariopsis 
Trunculus 

397 413 507 547 570 635 [6] 

Sea Urchin                                                                    399 420 508 547 570 632 [25] 

Pyracantha 

Coccinea 

399 412 506 548 574 631 this paper 

 

 

 

to the differences in energy ∆E between the excited states

are equal to λ = hc
∆E , where h is the Planck constant and

c is the speed of light. The difference between the energies
corresponding to the peaks at 412 nm and 506 nm gave the
wavelength λ of about 2000 nm. This value corresponds to
the intense absorption observed for the blood by IR spec-
troscopy [23]. If we consider the wavelengths of 369 nm and
of 399 nm, the energy difference corresponds to 1400 nm.
An intense absorption in the same energy region was also
observed in the blood [23].

In the case of living matter containing large concentra-
tions of water molecules and subjected to the direct ac-
tion of solar radiation, similar mechanisms for collection
and use of this energy should have emerged during evolu-
tion. The transitions n→n* are responsible for the creation
and destruction of the most complex molecules and a PA
spectrum is several orders of magnitude more intense than
that observed in the visible and infrared part of electroma-
gnetic radiation. Ion complexes of the 3d transition group
(commonly copper and iron ions) with their so-called d-
d transitions are generally observed in the visible range.
This means that the absorption of solar electromagnetic
radiation in the visible range should be focused on electron
transitions [22, 26-29]. The role in processes related to the
living matter of most of the observed electronic transitions
in the visible range is not known. A photoacoustic study
of polyamines has shown the presence of the same range
of electronic transitions [18, 19, 30-33]. In the paper [33]
a mechanism for the occurrence of the so-called „channel
selector” has been proposed. Complexes of copper ions and
iron have extended wave functions and electrons could be
propagated throughout the whole molecule. This distribu-
tion is different in the excited state in comparison to the
ground state. This fact may play an important role in the
regulation of many processes in the living matter. This is
particularly evident in the area of production of food, wine
and generally in human life. PA spectra in the visible spec-
trum are more intense in living organisms and fruits than in

40



Pol. J. Appl. Sci., 2015, 1, 33-36 N. Guskos et al: Photoacoustic Response of Red Fruit. . .

leaves. This is understandable because the fruit is formed
at the beginning of a living organism [6, 7, 10, 11].

It should be noted that between the red leaf and the
fruit there are very big differences in the intensity of trans-
itions that are responsible for the process of photosynthesis
and in the visible range [11]. Another very important fact
is the great concentration of molecular water in living sys-
tems. Molecular concentration of water is a very important
factor leading to an increase in bioorganic complexes of
metal involved in the photoacustic process. Water is trans-
parent to longer wavelengths of electromagnetic radiation.
This was demonstrated experimentally in hydrated and de-
hydrated tissues. In the latter case less intense photoacustic
spectrum was recorded [6, 7].

It is obvious that the processes associated with heat play
a very important role in the living system. It was shown
that the intensities of the photoacustic absorption are dif-
ferent in different organisms. Thus, the photoacoustic spec-
troscopy gives us additional information about the thermal
processes that can occur in the living organism and espe-
cially provides information about their intensities. In the
future much more attention should be paid to the investi-
gations on relative intensities of the d-d transitions being
detected by the photoacoustic spectroscopy.
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Fig. 2: PA spectrum of the red fruit of Pyracantha Coccinea

Conclusions

The measurements of photoacoustic spectroscopy on the
red fruit of Pyracantha Coccinea showed the presence of
electronic transitions similar as in the cases of Ficus Ben-
jamina, Asterias Rubens, Trunculariopsis Trunculus, Sea
Urchin, human skin and blood obtained by UV spectro-
scopy. Living matter, plants, animals and humans have si-
milar basic ingredients necessary for life. Thus, it could be

suggested that solar radiation plays an important role in
the regulating mechanisms in the same biological processes
connected with the life.
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