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Abstract

A method of the finite approximation of continuous noncooperative games is presented. The method is based
on sampling the functional spaces, which serve as the sets of pure strategies of the players. The pure strategy
is a linear function of time, in which the trend–defining coefficient is variable. The spaces of the players’ pure
strategies are sampled uniformly so that the resulting finite game is one whose payoff matrices are hypercubic.
The presented method of finite approximation makes solutions tractable so that they can be easily implemented
and practiced. The approximation procedure starts with alimited number of intervals, for which the respective
finite game is built and solved. Then this number is gradually increased, and new, bigger, finite games are solved
until an acceptable solution becomes sufficiently close to the same–type solutions at the preceding iterations.
The closeness is expressed as the absolute difference between the trend-defining coefficients of the strategies
from the neighbouring solutions. These distances should be decreasing once they are smoothed with respective
polynomials of degree 2.
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Introduction

Continuous noncooperative games are well-fitting ma-
thematical models for describing and predicting interac-
tions of subjects (players or persons) possessing continu-
ums of their pure strategies [1, 2]. However, the continuity
plays rather an obstructive role than a helpful one in enve-
lopment. Even in the games with two players, finding and
practicing a solution in mixed strategies is hardly tracta-
ble [3,4]. In cases when a solution exists in pure strategies,
it often is revealed not to be the only one. Thus, the pro-
blem of the single solution selection arises. Moreover, even
if the solution is unique or can be selected as the single best
one, it is not guaranteed to be simultaneously profitable and
symmetric [2, 4, 5].

It is worth noting that the analytic solution search in
continuous games is a very difficult task. As of 2020, no
unified algorithmic theory of solving continuous noncoope-
rative games has been built. Even in the games with two
players, the algorithmization of the analytic solution search
is possible only for special classes of payoff functions [2–4,6].
Therefore, finite approximation of continuous noncoopera-
tive games is not just preferable but is also quite neces-

sary [7,8]. It should open a single way to interpret and ad-
vise the best actions for players, without losing information
in the continuity.

Motivation

A special class of noncooperative games is one where
the player’s pure strategy is a time–varying function. This
function is determined by a few parameters or coefficients
which may vary through intervals. Therefore, the set of
the player’s pure strategies is a functional space. Such a
game model is typical for social (behavioural) and econo-
mic interaction processes, where the player uses short–term
time–varying strategies [3, 7, 7]. The player’s pure strategy
indicates the short–term dynamics of social and economic
activity. Besides, linear short–term dynamics is typical for
competitive development processes in ecosystems [9], in-
dustrial management [10], transportation [11, 12], energy
accumulation [13], etc.

In the simplest but very common case, the strategy is
a linear function of time. The time interval (not to be con-
fused with intervals of the function coefficients) is usually
pretty short because the dynamics of competitive activity

© Copyright by the Lomza State University of Applied Sciences



Vadim Romanuke: Tractable finite approximation of continuous noncooperative games. . . Pol. J. Appl. Sci., 2019, 5, 33-40

is naturally volatile. Thus, each short time interval corre-
sponds to some short-term trend of the competitive acti-
vity [3, 4]. The whole process of the competitive activity is
modelled as a series of such noncooperative games, where
each game corresponds to its short term. Then, obviously,
the games are required to be solved without delays.

The problems of a delayless solution and its uniqueness
are addressed in studying approaches to finite approxima-
tions of continuous games. When the game is defined on
finite–dimensional Euclidean subspaces, it can be approxi-
mated by appropriately sampling the sets of players’ pure
strategies [14,15], whereupon an approximating game is so-
lved easily and relatively faster. The appropriateness he-
rein means obtaining an approximating game whose content
does not differ much from that of the initial, continuous,
game. In the case when the game is defined on a product of
functional spaces, a rigorous substantiation is required to
sample the functional sets of players’ pure strategies. As in
the case of finite–dimensional Euclidean subspaces, this will
allow appropriate sampling, without losing information in
the continuity. Nevertheless, it is worth noting that an ap-
proximated solution (with respect to the initial game) can
still be selected unilaterally in order to meet the demands
and rules of the competitive system [3,4, 16].

Goals and tasks to be fulfilled

Motivated by the above reasons, the goal is to develop a
method of finite approximation of continuous noncoopera-
tive games whose kernels (the payoff functions of the play-
ers) are defined on a product of linear strategy functional
spaces. For achieving the goal, the following tasks are to be
carried out:

1. To formalize a continuous noncooperative game whose
kernel (every player’s payoff function) is defined on a
product of linear strategy functional spaces. In such
a game, the set of the player’s pure strategies is a
continuum of linear functions of time.

2. To rigorously substantiate a method of finite approxi-
mation. The selection of the single best game solution
is to be justified.

3. To discuss the applicability and significance of the
method. The contribution to the game theory field is
to be clearly emphasized.

A continuous noncooperative game

In the above–mentioned continuous noncooperative game
of N players, N ∈ N/{1}, each of the players uses short–term
time–varying strategies determined by two coefficients. The
short–term trend is defined by a real–valued coefficient which

is multiplied by time t. The other coefficient is presumed to
be known (i. e., it is a constant), and it is called an offset [3].

The pure strategy is valid on interval [t1; t2] by t2 > t1,
so the pure strategies of the player belong to a functional
space of linear functions of time:

L[t1; t2] ⊂ L2[t1; t2].

Denote the trend–defining coefficient of the n–th player by
bn, where

bn ∈ [b(min)n ; b(max)n ] by b(max)n > b(min)n . (1)

If the n-th player’s offset is an, then its set of pure strategies
is

Xn = {xn(t) = an + bnt, t ∈ [t1; t2] ∶ bn ∈

∈ [b(min)n ; b(max)n ] ⊂ R} ⊂ L[t1; t2] ⊂ L2[t1; t2], n = 1,N.
(2)

The n–th player’s payoff in situation {xm(t)}Nm=1 is

Kn({xm(t)}Nm=1), n = 1,N . It is presumed that this pay-
off is an integral functional:

Kn({xm(t)}Nm=1) = ∫
t2

t1
fn({xm(t)}Nm=1)dt, (3)

where fn({xm(t)}Nm=1) is an algebraic function of N func-

tions {xm(t)}Nm=1 defined everywhere on [t1; t2] . Therefore,
the continuous noncooperative game

⟨{Xn}Nn=1,{Kn({xm(t)}Nm=1)}Nn=1⟩ (4)

is defined on product

N

⨉
n=1

Xi ⊂
N

⨉
n=1

L[t1; t2] ⊂
N

⨉
n=1

L2[t1; t2] (5)

of linear strategy functional spaces (2).

Acceptable solutions/situations

Since a series of games (4) on product (5) is to be solved
for further usage in practice, the only acceptable solutions
are equilibrium or/and efficient situations in pure strate-
gies. Such situations are defined similarly to those in games
on finite–dimensional Euclidean subspaces [1, 2].

Definition 1. Situation {x∗m(t)}Nm=1 in game (4) on pro-
duct (5) by conditions (1) – (3) is an equilibrium situation
in pure strategies if inequalities

Kn({{{x∗m(t)}Nm=1/{x∗n(t)}} ∪ xn(t)}) ⩽

⩽Kn({x∗m(t)}Nm=1) ∀xn(t) ∈Xn for n = 1,N (6)

are simultaneously true.
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Definition 2. Situation {x∗∗m (t)}Nm=1 in game (4) on
product (5) by conditions (1) – (3) is an efficient situation
in pure strategies if inequalities

Kn({x∗∗}Nm=1) ⩽Kn({xm(t)}Nm=1)

by ∃g ∈ {1,N} such that

Kg({x∗∗}Nm=1) <Kg({xm(t)}Nm=1) (7)

are impossible for any xn(t) ∈Xn for n = 1,N .
The continuous noncooperative game can have the empty

set of equilibria in pure strategies [2]. Moreover, every ef-
ficient situation can be too asymmetric, i. e. it is profita-
ble for a subset of players and unacceptably unprofitable
for another subset of players. In such cases, the game does
not have an acceptable solution. Then the concepts of ε–
equilibrium and ε–efficiency are useful (e. g., see [2, 3]).

Definition 3. Situation {x∗(ε)m (t)}Nm=1 in game (4) on
product (5) by conditions (1) – (3) is an ε–equilibrium si-
tuation in pure strategies for some ε > 0 if inequalities

Kn({{{x∗(ε)m (t)}Nm=1/{x∗(ε)n (t)}} ∪ xn(t)) ⩽

⩽Kn({x∗(ε)m (t)}Nm=1) + ε ∀xn(t) ∈Xn

for n = 1,N (8)

are simultaneously true.

Definition 4. Situation {x∗∗(ε)m (t)}Nm=1 in game (4) on
product (5) by conditions (1) – (3) is an ε–efficient situation
in pure strategies for some ε > 0 if inequalities

Kn({x∗∗(ε)m (t)}Nm=1) + ε ⩽Kn({xm(t)}Nm=1)

by ∃g ∈ {1,N} such that

Kg({x∗∗(ε)m (t)}Nm=1) + ε <Kg({xm(t)}Nm=1) (9)

are impossible for any xn(t) ∈Xn for n = 1,N .
The equilibrium situations given by Definition 1 and

Definition 3 (by admissible ε) and efficient situations by
Definition 2 and Definition 4 (by admissible ε) are the ac-
ceptable solutions regardless of whether the game is finite
or not. Obviously, the best consequence is when a situation
is simultaneously equilibrium (by Definition 1) and efficient
(by Definition 2). If such a situation does not exist, the most
preferable is an efficient situation in which the sum of play-
ers’ payoffs is maximal. However, if the payoffs are unac-
ceptably asymmetric, then the best consequence is to find
such admissible ε for which a situation is simultaneously
equilibrium (by Definition 3) and efficient (by Definition
4). This approach relates to the method of solving games

approximately by providing concessions (see [17]), where
a payoff asymmetry is smoothed over by a compensation
from the subset of players whose payoffs are unacceptably
greater [3].

The finite approximation

It is obvious that, in game (4) on product (5) by condi-
tions (1) – (3), the pure strategy of the player is determi-
ned by the trend–defining coefficient. Therefore, this game
can be thought of as it is defined, instead of product (5)
of linear strategy functional spaces (2), on N –dimensional
hyperparallelepiped

N

⨉
n=1

[b(min)n ; b(max)n ] ⊂ RN . (10)

This hyperparallelepiped is easily sampled by using a num-
ber of equal intervals along each dimension. Denote this
number by S, S ∈ N/{1}. Then

Bn = {b(min)n + (s − 1) ⋅ b
(max)
n − b(min)n

S
}S+1
s=1 =

= {b(s)n }S+1
s=1 ⊂ [b(min)n ; b(max)n ] ∀n = 1,N (11)

So, hyperparallelepiped (10) is substituted with grid⨉Nn=1Bn.
Set (11) leads to a finite set

X(Bn)n = {xn(t) = an + bnt, t ∈ [t1; t2] ∶ bn ∈ Bn ⊂

⊂ [b(min)n ; b(max)n ] ⊂ R} = {xns(t) = an + b(s)n t}S+1
s=1 ⊂

⊂Xn ⊂ L[t1; t2] ⊂ L2[t1; t2] (12)

of pure strategies (linear functions of time) of the n–th
player, where

xn1(t) = an + b(min)n t,

xn,S+1(t) = an + b(max)n t.

Subsequently, game (4) on product (5) by conditions
(1) – (3) is substituted with a finite game

⟨{X(Bn)n }Nn=1,{Kn({xm(t)}Nm=1)}Nn=1⟩

by xn(t) ∈X(Bn)n for n = 1,N (13)

defined on product

N

⨉
n=1

X(Bn)n ⊂
N

⨉
n=1

Xn ⊂
N

⨉
n=1

L[t1; t2] ⊂
N

⨉
n=1

L2[t1; t2] (14)

of linear strategy functional subspaces (12). In fact, game

(13) is a noncooperative ⨉Nn=1(S + 1)–game.
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To perform an appropriate approximation via the sam-
pling, number S is selected so that none of SN sub–hyperpa-
rallelepipeds

N

⨉
n=1

[b(im)n ; b(im+1)
n ] ⊂

N

⨉
n=1

[b(min)n ; b(max)n ] ⊂ RN

by im = 1, S and m = 1,N (15)

would contain significant specificities of payoff functionals

(3) ∀n = 1,N . In fact, such specificities are extremals of
these functionals.

Theorem 1. In game (4) on product (5) by condi-
tions (1) – (3), the player’s payoff functional achie-
ves its maximal and minimal values on any closed
sub–hyperparallelepiped of the trend–defining co-
efficients.

Proof. Every fn({xm(t)}Nm=1) (n = 1,N) is an algebraic

function of linear functions {xm(t)}Nm=1 defined everywhere
on [t1; t2]. Therefore, the integral in every functional (3)
achieves some maximal and minimal values on any closed
sub–hyperparallelepiped of the trend-defining coefficients.

Thus, Theorem 1 allows controlling extremals of payoff

functionals (3) ∀ n = 1,N by the trend-defining coefficients.
Moreover, Theorem 1 is easily expanded on closed sub–
hyperparallelepipeds (15) for any number S. Consequently,
if inequalities

max

⨉Nn=1[b
(im)
n ; b(im+1)

n ]Kj({xm(t)}Nm=1)−

− min

⨉Nn=1[b
(im)
n ; b(im+1)

n ]Kj({xm(t)}Nm=1) =

= max

⨉Nn=1[b
(im)
n ; b(im+1)

n ] ∫
t2

t1
fj({xm(t)}Nm=1)dt−

− min

⨉Nn=1[b
(im)
n ; b(im+1)

n ] ∫
t2

t1
fj({xm(t)}Nm=1)dt ⩽ µ

∀im = 1, S and ∀m = 1,N and ∀j = 1,N (16)

are simultaneously true for some sufficiently small µ > 0,
then those µ–variations can be ignored. Thus, for the pro-
perly selected S and µ, game (4) on product (5) by con-
ditions (1) – (3) can be approximated by finite game (13).
The quality of the approximation can be comprehended by
the following assertions.

Theorem 2. If {x∗m(t)}Nm=1 is an equilibrium in
game (4) on product (5) by conditions (1) – (3),

where functionals (3) ∀n = 1,N are continuous, con-
ditions (16) hold for some S and µ,

x∗m(t) = am + b∗mt by b∗m ∈ [b(hm)m ; b(hm+1)
m ]

for hm ∈ {1, S} and ∀m = 1,N, (17)

then every situation {x∗(ε)m (t)}Nm=1 for which

x∗(ε)m (t) = am + b∗(ε)m by b∗(ε)m ∈ [b(hm)m ; b(hm+1)
m ]

for hm ∈ {1, S} and ∀m = 1,N, (18)

is an ε–equilibrium for some ε > 0. As number S is
increased, the value of ε can be made smaller.

Proof. Whichever integer S and the corresponding µ

are, the value of ε always can be chosen such that inequali-
ties (8) be true for every situation composed of strategies
(18) by (17). It is obvious that, owing to the continuity of
the functionals, the increasing number S allows decreasing
the value of µ, which provides ε–equilibria to be closer to
the equilibrium composed of strategies (17).

Theorem 3. If {x∗∗m (t)}Nm=1 is an efficient situation
in game (4) on product (5) by conditions (1) – (3),

where functionals (3) ∀n = 1,N are continuous, con-
ditions (16) hold for some S and µ,

x∗∗m (t) = am + b∗∗m t by b∗∗m ∈ [bhmm ; b(hm+1)
m ]

for hm ∈ {1, S} and ∀m = 1,N, (19)

then every situation {x∗∗(ε)m (t)}Nm=1 for which

x∗∗(ε)m (t) = am + b∗∗(ε)m by b∗∗(ε)m ∈ [b(hm)m ; b(hm+1)
m ]

for hm ∈ {1, S} and ∀m = 1,N, (20)

is an ε–efficient situation for some ε > 0. As number
S is increased, the value of ε can be made smaller.

Proof. Whichever integer S and the corresponding µ

are, value ε always can be chosen such that inequalities
(9) be true for every situation composed of strategies (20)
by (19). It is obvious that, owing to the continuity of the
functionals, the increasing number S allows decreasing the
value of µ, which provides ε–efficient situations to be closer
to the efficient situation composed of strategies (19).

Hence, the finite approximation should start from some

integer S, for which the respective finite ⨉Nn=1(S + 1)–game
(13) is built and solved. Then this integer is gradually in-
creased, and new, bigger, finite games are solved. The pro-
cess can be stopped if the acceptable solution (whether it
is an equilibrium, efficient, ε–equilibrium, or ε–efficient si-
tuation) by the last iteration does not differ much from the
acceptable solutions (of the same type) by a few preceding
iterations. Thus, if

{x<l>∗n (t)}Nn=1 = {an + b<l>∗n t}Nn=1 ∈
N

⨉
n=1

X(Bn)n ⊂
N

⨉
n=1

Xn (21)
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is an acceptable solution/situation at the l–th iteration,
then the conditions of the sufficient closeness to the so-
lutions at the preceding and succeeding iterations are as
follows:

√
∫

t2

t1
(x<l−1>∗
n (t) −<l>∗n (t))2 dt ⩾

⩾
√
∫

t2

t1
(x<l>∗n (t))2 dt ∀n = 1,N (22)

and
max

t ∈ [t1; t2]
∣x<l−1>∗
n (t) − x<l>∗n (t)∣ ⩾

⩾ max
t ∈ [t1; t2]

∣x<l>∗n (t) − x<l+1>∗(t)∣ ∀n = 1,N (23)

by l = 2,3,4, ...
Theorem 4. Conditions (22) and (23) of the suffi-

cient closeness for game (4) on product (5) by con-
ditions (1) – (3) are expressed as trend–defining–
coefficient closeness inequalities:

∣b<l−1>∗
m − b<l>∗m ∣ ⩾ ∣b<l>∗m − b<l+1>∗

m ∣

∀n = 1,N by l = 2,3,4, ... (24)

Proof. Due to that

√
∫

t2

t1
(x<l−1>∗
n (t) − x<l>∗n (t))2 dt =

=
√
∫

t2

t1
(an + b<l−1>∗

n t − an − b<l>∗n t)2 dt =

=
√
∫

t2

t1
(b<l−1>∗
n − b<l>∗n )2 t2dt =

=
√

(b<l−1>∗
n − b<l>∗n )2 ( t

3
2

3
− t

3
1

3
) =

= ∣b<l−1>∗
n − b<l>∗n ∣

√
t32 − t31

3

and
max

t ∈ [t1; t2]
∣x<l−1>∗
n (t) − x<l>∗(t)∣ =

= max
t ∈ [t1; t2]

∣(b<l−1>∗
n − b<l>∗n )t∣ = ∣b<l−1>∗

n − b<l>∗n ∣t2

(where time is presumed to be nonnegative), inequalities
(22) and (23) are simplified explicitly:

∣b<l−1>∗
n −b<l>∗n ∣

√
t32 − t31

3
⩾ ∣b<l>∗n −b<l+1>∗

n ∣
√

t32 − t31
3

∀n = 1,N

and

∣b<l−1>∗
n − b<l>∗n ∣t2 ⩾ ∣b<l>∗n − b<l+1>∗

n ∣t2 ∀n = 1,N,

whence they are expressed as just trend-defining-coefficient
closeness inequalities (24).

If inequalities (24) hold for at least three iterations, the
approximation procedure can be stopped. Clearly, the close-
ness strengthens if inequalities (24) strictly hold. However,
inequalities (24) may not hold (i. e. at least one of them
is violated) for a wide range of iterations, so it is better to
require that polylines

λn(l) = ∣b<l>∗n − b<l+1>∗
n ∣ ∀n = 1,N by l = 1,2,3, ... (25)

be decreasing on average. Herein, the term ”on average”
implies that, in the case when inequalities (24) do not hold
(at least one of them is violated), polylines (25) are smo-
othed (approximated) with the respective polynomials of
degree 2. The selection of the single best game solution re-
lies on its convergence in accordance with polylines (25)
being decreasing on average.

Selection of the single best game solution

Consider an example in which the selection of the single
best game solution is justified. Let there be three players
whose pure strategies are defined on t ∈ [0; 90], and the sets
of pure strategies of the first, second, and third player, are

X1 = {x1(t) = 50 + b1t, t ∈ [0; 90] ∶ b1 ∈

∈ [−0.5; 0.5] ⊂ R} ⊂ L[0; 90] ⊂ L2[0; 90], (26)

X2 = {x2(t) = 40 + b2t, t ∈ [0; 90] ∶ b2 ∈

∈ [−0.6; 0.6] ⊂ R} ⊂ L[0; 90] ⊂ L2[0; 90], (27)

X3 = {x3(t) = 80 + b3t, t ∈ [0; 90] ∶ b3 ∈

∈ [−0.3; 0.3] ⊂ R} ⊂ L[0; 90] ⊂ L2[0; 90], (28)

respectively (Figure 1). Their respective payoff functionals
are

K1(x1(t), x2(t), x3(t)) =

∫
90

0
(−2x2

1 − 3x1x2 + x2
3 + x1x2x3 −

x1

4x2 + x3 + 60
)dt, (29)

K2(x1(t), x2(t), x3(t)) =

= ∫
90

0
22 ⋅ (3x1x3 − 8x2 −

x1

x2
3
)dt, (30)

K3(x1(t), x2(t), x3(t)) = ∫
90

0

256x1x2x3

x1 + x2 + x3 + 20
dt. (31)
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Fig. 1: The sets (functional spaces) of the players’ pure strategies (26) –
(28)

Consequently, this game can be thought of as it is defined
on parallelepiped

[−0.5; 0.5] × [−0.6; 0.6] × [−0.3; 0.3] ⊂ R3. (32)

It is easy to see that each of functionals (29) – (31) is
continuous. Therefore, Theorem 2 and Theorem 3 ensure
a possibility of the finite approximation. For making this,
the number of intervals is gradually increased from 5 up to

30, i. e. S = 5,30 and thus 6 × 6 × 6–game, 7 × 7 × 7–game,
..., 31 × 31 × 31–game are solved. Each of these games has
a single equilibrium situation and S + 1 efficient situations

(Figure 2). Every situation has b<l>∗3 = 0.3 (l = 1,26), so
the third player has its best strategy x3(t) = 80 + 0.3t in
an acceptable solution. In every equilibrium situation, the
trend–defining coefficient of the second player is −0.6, whe-
reas the trend–defining coefficient of the first player is 0.5 in
every efficient situation. Furthermore, every situation with
strategies x1(t) = 50 + 0.5t and x3(t) = 80 + 0.3t is efficient
(Figure 3). In other words, every situation

{x1(t), x2(t), x3(t)} = {50 + 0.5t,40 + b(s)2 t,80 + 0.3t} =

= {50 + 0.5t,40 + ((s − 1) ⋅ 1.2
S

− 0.6)t,80 + 0.3t}

∀s = 1, S + 1 (33)

is efficient. However, situations (33) are not equilibrium
except for situation

{x1(t), x2(t), x3(t)} = {50 + 0.5t,40 − 0.6t,80 + 0.3t} (34)

in the respective 6 × 6 × 6–game (at the very first iteration,
with S = 5; the single circled dot is seen in Figure 2 and,
iteration–wise, in Figure 3).
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Fig. 2: All 26 equilibria (circle–marked) and 481 efficient situations (dot–
marked) visualized on parallelepiped (32) in the solved trimatrix games

Figure 3 also shows that the single equilibrium is not
”stable” as the iterations progress. Nevertheless, a very im-
portant fact here is that the maximal sum of players’ pay-
offs in equilibrium situations is equal to the minimal sum of
players’ payoffs in efficient situations. This parity exists in
equilibrium–and–efficient situation (34). Consequently, the
sum of players’ payoffs in other efficient situations is greater
than that in equilibrium situations. Moreover, the average
payoff of every player in efficient situations is greater than
that in equilibrium situations. This implies that the play-
ers will prefer the efficient situations to the equilibria. The
maximal sum of players’ payoffs in efficient situations is
achieved in situation

{x∗∗1 (t), x∗∗2 (t), x∗∗3 (t)} =
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= {50 + 0.5t,40 + 0.6t,80 + 0.3t}. (35)

Therefore, situation (35) is the best acceptable solution for
the players.
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Fig. 3: The evolution of the single equilibrium and S+1 efficient situations
through 26 iterations

It is worth noting that inequalities (24) in this case tri-
vially hold. Then, obviously, polylines (25) turning into ze-
ros are needless. However, this is probably just a ”suitable”
example. In fact, in ”catching” the single best game solu-
tion, the maximization of the sum of players’ payoffs is as
influential as finding polylines (25) decreasing on average.
This is a sufficient mindset to start searching for the solu-
tion. This approach is kind of processing the game from the
simplest treatment to building it more complicated unless
the framework ”stabilizes”.

Discussion

Short–term strategies can always be approximated as
linear functions of time. The presented method of finite
approximation makes solutions tractable so that they can
be easily implemented and practiced. So, the finite appro-
ximation method specifies and establishes the applicabi-
lity of continuous noncooperative games on a product of
linear strategy functional spaces. Mainly, it concerns mo-
delling social (behavioural) and economic interaction pro-
cesses, where the player can use a continuum of short–term
time–varying strategies. Other processes, in which short–

term strategies can be linearized for the simpler considera-
tion, are intrinsic competitions in ecosystems [9], health–
and–safety engineering [18], managing traffic and storage
regulations [11–13], etc.

However, the justification of the single best game solu-
tion referred to as an acceptable situation still cannot be
algorithmized in general. It requires considering the sum of
players’ payoffs and convergences, where the payoffs should
”stabilize” and the acceptable situations are expected to
cluster without bouncing.

In modelling, any process with continuities is tried to
be discretized into short–term parts. Therefore, the pre-
sented finite approximation method is quite significant. It
allows avoiding too complicated solutions resulting from
game continuities and, moreover, functional spaces of pure
strategies. Such a ”deeinstellungization” [19] of the continu-
ous noncooperative games is a promising approach to effec-
tively distribute limited resources under uncertainty or/and
growing demands [2, 3], and remove negative impact of so-
phisticated mindset on making optimal/tractable decisions
as well [20].

Conclusion

For solving continuous noncooperative games on a pro-
duct of linear strategy functional spaces, a method of their
finite approximation is presented, which is based on sam-
pling the linear strategy functional spaces. The sets (i. e.
the spaces) of the players’ pure strategies are sampled uni-
formly so that the resulting finite game is defined on a
multidimensional cube. The respective payoff matrices are
hypercubic. The approximation procedure starts with a li-
mited number of intervals, for which the respective finite
game is built and solved. Then this number is gradually
increased (the increment is not defined for a general case),
and new, bigger, finite games are solved until an acceptable
solution becomes sufficiently close to the same–type solu-
tions at the preceding iterations. The closeness is expressed
in terms of the respective functional spaces, which is sim-
plified by Theorem 4, giving just the absolute difference be-
tween the trend–defining coefficients of the strategies from
the neighbouring solutions. These distances should be de-
creasing once they are smoothed with respective polyno-
mials of degree 2.

The presented finite approximation method is a contri-
bution to the game theory field encompassed with nonco-
operative games whose players’ strategies are linear func-
tions of time. The contribution also consists in solving the
problem of solution uniqueness. It allows effectively mo-
delling social (behavioural), economic, ecological, manage-
rial, health–and–safety engineering and industrial interac-
tion processes, where players (any number of them) use
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short–term linear strategies corresponding to short–term
trends of their activity. The practical effectiveness is en-
sured by that solving a series of such short–term nonco-
operative games is faster owing to the whole process is di-
scretized and thus much simplified. A question of the game
finite approximation for cases of nonlinear strategy spaces
(when, say, the player’s strategy space is of parabolas or cu-
bic polynomials) is believed to be answered in the similar
manner, although some peculiarities concerning the conti-
nuity of the payoff functionals may weaken the impact of
Theorem 2 and Theorem 3.
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