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HIGHLIGHTING A CLOSE-TO-ONE-SPECIFIC-COLOR SURFACE
BASED ON THRESHOLDING COLOR-CHANNEL-WISE

DISTANCES TO A PIXEL PALETTE

Vadim Romanuke

Faculty of Navigation and Naval Weapons
Polish Naval Academy, Gdynia, Poland

E-mail: romanukevadimv@gmail.com

Abstract: A conception of highlighting close-to-one-specific-color surfaces (sea water, a green forest, asphalt
on a highway, etc.) is presented. The goal is to develop an efficient algorithmic routine for highlighting such
surfaces. Once a bank of diverse images having the color of interest is chosen, a pixel palette is formed. The pixel
palette is of one-pixel samples, each of which has a unique color close to the color of interest. Then, for every
single pixel sample in the palette, color-channel-wise distances between the image and palette are computed and
normalized. The normalized distances are compared to a threshold for every sample. If the distances are less than
the threshold (for all the color channels simultaneously), the corresponding pixels of the image are highlighted.
With the before-formed pixel palettes, when the threshold is fine-tuned, the developed routine is fully automatic.
It requires only a type of highlighting task (whether it is the sky, clouds, asphalt, calm river water, or any other
similar surfaces of medium complexity) to be input to load the corresponding pixel palette and threshold. Similar
to chroma keying, the suggested method can nonetheless work with complex colors, so it is more robust.

Key words: color image, surface highlighting, pixel palette, color-channel-wise distance, threshold

DOI: 10.34668/PJAS.2018.4.4.02

Introduction

The problem of highlighting objects in a color image
is typical in processing images and representing them in a
more convenient view for human analysis or decision ma-
king [1, 2]. This problem differs from an object detection
problem in that an object meant to be highlighted should
be contoured precisely (Fig. 1). In the simplest case, an ob-
ject to be highlighted has close-to-one specific color. This
can be, for example, sea water, a green forest, asphalt on
a highway, etc. Then the problem may be called a surface
highlighting [3, 4].
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Figure 1. A difference of the object highlighting problem from the object detection problem 

 

Despite the seeming simplicity for one-colored surfaces, an algorithm for highlighting cannot be built 

just by matching colors. Firstly, the surface color may slightly differ from image to image. For instance, the 

color of a sea depends on sunlight, depth, wind speed, and some other factors. Secondly, if a few objects 

have roughly the same color, then they may be confused with the surface and thus be wrongfully highlighted. 

Keeping the exemplification, a boat of the sea color is either masked in the surface or pops out in the horizon 

appearing after highlighting as a strange wave or something. 

Hence, surface highlighting is intended to be robust. Robustness is meant here mainly as independence 

of natural and artificial light (including daylight opposed to dawn and evening lights), the presence of objects 

or surfaces having the same color (including casting shadows), contortion, and warping [5]. This is addressed 

by acquiring a variety of color representation [6]. 

Known approach analysis 

Surface highlighting is commonly similar to image segmentation [2, 4, 7] including highlighting as a 

partial case. Both of them have a goal of simplifying and/or changing the representation of an image into 

something that is more meaningful and easier to analyze/perceive. Thresholding is the simplest method of 

image segmentation, which works best for grayscale images [4, 7]. Color images can also be thresholded, 

where a separate threshold for each of the RGB components of the image is designated, and then these three 

Fig. 1: A difference of the object highlighting problem from the object
detection problem.

Despite the seeming simplicity for one-colored surfaces,
an algorithm for highlighting cannot be built just by mat-
ching colors. Firstly, the surface color may slightly differ
from image to image. For instance, the color of a sea de-
pends on sunlight, depth, wind speed, and some other fac-

tors. Secondly, if a few objects have roughly the same co-
lor, then they may be confused with the surface and thus
be wrongfully highlighted. Keeping the exemplification, a
boat of the sea color is either masked in the surface or pops
out in the horizon appearing after highlighting as a strange
wave or something.

Hence, surface highlighting is intended to be robust. Ro-
bustness is meant here mainly as independence of natural
and artificial light (including daylight opposed to dawn and
evening lights), the presence of objects or surfaces having
the same color (including casting shadows), contortion, and
warping [5]. This is addressed by acquiring a variety of color
representation [6].

Known approach analysis

Surface highlighting is commonly similar to image seg-
mentation [2, 4, 7] including highlighting as a partial case.
Both of them have a goal of simplifying and/or changing
the representation of an image into something that is more
meaningful and easier to analyze/perceive. Thresholding is
the simplest method of image segmentation, which works
best for grayscale images [4, 7]. Color images can also be
thresholded, where a separate threshold for each of the RGB
components of the image is designated, and then these three
are combined with logical conjunction. This reflects the way
a camera works and how the data is stored in a computer,
but it does not correspond to the way that people recognize
color. Therefore, the HSL and HSV color models are more
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often used although they ignore much of the complexity of
color appearance [1,8]. Moreover, since hue is a circular qu-
antity, it requires circular thresholding, and thus the HSL
and HSV color models may require the use of circular sta-
tistics [9]. Eventually, they appear too complicated for the
partial case of image segmentation.

On the other hand, a surface could be highlighted by the
means of more complex methods. In this way, algorithms for
highlighting use clustering pixels [10]. The classic clustering
algorithm is an iterative technique, and it is guaranteed to
converge, but it may not return the optimal solution. The
quality of the solution depends on the initial set of clusters.
Compared to thresholding, clustering algorithms are slower
due to the multiple iterations.

Histogram-based methods are very efficient compared
to other image segmentation methods because they typi-
cally require only one pass through the pixels [11]. In this
technique, a histogram is computed from all the pixels in
the image. Then the peaks and valleys in the histogram are
used to locate the clusters in the image, wherein either co-
lor or intensity is used as the measure. Despite the speed
of this method, its disadvantage is that it may be difficult
to identify significant peaks and valleys in the image.

Methods based on solving partial differential equations
[12], including fast marching method [13], and minimizing

a specific energy functional [14] can be fast and efficient.
However, numerical approaches for approximating the so-
lution often require the sampling strategy to be adjusted.
Thus, those methods may slow down.

Deep neural networks are the most complex models to
image segmentation [15]. If they are properly trained, their
performance is close to perfect, especially when only a single
close-to-one-specific-color surface is highlighted (the back-

ground is highlighted as well). Nevertheless, deep learning is
very time-consuming: a deep neural network is trained slo-
wer than any of the listed methods, and it performs slowly
consuming roughly the same computational resources.

So, thresholding is a compromise approach, which is
non-iterative, allowing an appropriate solution to be rapidly
found by parallelization. An obvious problem of threshol-
ding is that it works normally when a good background
to foreground contrast ratio exists. This problem trebles
for color images. Factual convergence of thresholding al-
gorithms trying to execute automatic thresholding varies
dramatically [7]. Hence, the surface highlighting problem
requires an algorithmic simplification, which is possible by
working even with RGB models where GPU computations
are easily applied nowadays [16,17].

Goal

Because of an apparent lack in algorithmizing the sur-
face highlighting problem, an efficient algorithmic routine
for close-to-one-specific-color surfaces will be developed. To
achieve this goal, four tasks need to be performed:

1. To state mathematically the main principles of hi-
ghlighting in color images using a standard three-
dimensional matrix representation of a color image.

2. To select a surface highlighting task for benchmarking
and test the stated principles on it.

3. To graph the routine for surface highlighting with po-
inting out weak places in it.

4. To discuss the routine and conclude by claiming fu-
ture advances in highlighting surfaces.

Highlighting close-to-one-specific-color surfaces

A color image is typically represented as a three-dimensional
matrix

M =
[
mijk

]
h×w×3 (1)

where h is a number of height pixels, w is a number of width
pixels, mij1, mij2, mij3 are intensities of red, green, blue,
respectively. Matrix (1) can be associated and referred to
as just the image it represents and vice versa. Ranges of
values in matrix (1) vary depending on a maximal num-
ber of colors (say, it can be 256, 4096, 65536, or even more
colors). A specific color of interest can be thought of as a

vector P =
[
p11k

]
1×1×3, which is actually a color of the

pixel. Vector P is factually represented as a 1-by-1-by-3
matrix. The difference between each pixel in image (1) and
P is expressed as a distance common for the most of appli-
cations (though this is a color-channel-wise distance):

dijk = |mijk − p11k|(i = 1, h, j = 1, w, k = 1, 2). (2)

Due to that ranges of values for various images may differ,
distance (2) is normalized:

d
〈1〉
ijk =

dijk
max
l=1,h

max
q=1,w

max
z=1,3

dlqz
(i = 1, h, j = 1, w, k = 1, 3).

(3)
If

d
〈1〉
ijk < d0 ∀k = 1, 3, (4)

where d0 is a threshold, then pixel i, j is highlighted.
However, P is not robust. It should be formed by a

variety of vectors representing colors similar to the color of
interest.
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Hence, a bank of diverse images having the color of in-
terest is chosen. Based on this image bank, a pixel palette
is formed. This palette is a four-dimensional matrix/array:

MS =
[
p11ks

]
1×1×3×S . (5)

Pixel palette (5) is of S one-pixel samples, each of which
has a unique color close to the color of interest. All pixels in
(5) are enough different. Then condition (4) for highlighting
is re-stated with more general distance (2) and normalized
distance (3):

dijks = |mijk − p11ks|(i = 1, h, j = 1, w, k = 1, 3, s = 1, S),
(6)

d
〈1〉
ijks =

dijks
max
l=1,h

max
q=1,w

max
z=1,3

max
u=1,S

dlqzu

(i = 1, h, j = 1, w, k = 1, 3, s = 1, S).

(7)

Thus, if

d
〈1〉
ijks < d0 ∀k = 1, 3 for (at least) some s ∈ 1, S, (8)

then pixel i, j is highlighted. Obviously, a threshold in con-
dition (8) should be lower than that in one-sample condition
(4).

A greater number of samples in palette (5) correspond
to a more complicated texture of the surface to be highligh-
ted. For instance, the texture of a blue sky (without clouds)
is very simple and is represented with a few tones of the li-
ght blue, whereas the texture of sea water (especially with
waves) has a far wider range of colors. Therefore, number
for the cloudless sky may not exceed 5 to 9, but the pi-
xel palette for sea water should consists of at least a few
thousands of pixels.

A highway cover highlighting task

Among others, the task of highlighting highway asphalt
is not the simplest one. The texture of asphalt is similar to
that of sea water, but the heterogeneousness of the asphalt
surface is seen only by zooming in. This is why the highway
cover highlighting task is of medium complexity.

A bank of 10 highway images from which pixel palette
(5) is going to be formed is shown in Fig. 2 (the images
are freely available on the Internet). Each image has quite
a monotonous highway view, from which a few tiny parts
are extracted and averaged to a pixel for its palette (5).
Namely, if

Tns =
[
t
(ns)
ijk

]
hns×w×3 (9)

is an hns × wns region off an image (the n-th tiny part for

the s-th pixel sample), where n = 1, N by Ns ∈ N, then
the s-th pixel sample is

p11ks =
1

Ns · hns · wns
·
Ns∑
n=1

hns∑
i=1

wns∑
j=1

t
(ns)
ijk (k = 1, 3, s = 1, S).

(10)

Pixel palette P30 =
[
p11ks

]
1×1×3×30 for this task is shown

in Fig. 3. Generally, the number of tiny parts clipped out of
an image can vary. The number of pixel samples made off
an image can vary as well. Smaller images may “produce”
fewer pixel samples, for which integer Ns is likely to be
small too (e. g., a one tiny part per image can be). A bigger
image will give several pixel samples, for each of which the
number of tiny parts (the respective integer Ns) is likely to
be greater (up to 10 and even more).

 

Figure 2. A basis of 10 highway images (the original aspect ratio has been maintained) for forming a 

pixel palette of the highway cover (dry asphalt) 
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Figure 3. A pixel palette of the highway cover (dry asphalt) based on initial images in Figure 2 (every 

image in Figure 2 has “produced” three pixel samples for this palette); the left-side view is just a 

result of file format conversion that may misleadingly appear as a “continuous” palette, contrary to 

the right-side real 5 6  palette (consisting of 30 pixel samples) 

 

For testing the highlighting method, images with noise or interference are suitable (Figure 4). Figure 

5 shows those three test images, wherein the highway cover is highlighted by threshold 0 0.05d   (a 5 % 

deviation analogue) under condition (8) for 1, 30s  . More rigorous analysis, by 0 0.03d  , reveals some 

highway parts (Figure 6) missed while averaging by (9) and (10). Either this may imply that the set of 10 

initial images for forming pixel palette misses a few representative images (a non-complete basis of the 

surface). 
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Fig. 3: A pixel palette of the highway cover (dry asphalt) based on initial
images in Fig. 2 (every image in Fig. 2 has “produced” three pixel samples
for this palette); the left-side view is just a result of file format conversion
that may misleadingly appear as a “continuous” palette, contrary to the
right-side real 5×6 palette (consisting of 30 pixel samples).

For testing the highlighting method, images with no-
ise or interference are suitable (Fig. 4). Fig. 5 shows those
three test images, wherein the highway cover is highligh-
ted by threshold d0 = 0.05 (a 5% deviation analogue) un-

der condition (8) for s = 1, 30. More rigorous analysis, by
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d0 = 0.03, reveals some highway parts (Fig. 6) missed while
averaging by (9) and (10). Either this may imply that the
set of 10 initial images for forming pixel palette misses a few
representative images (a non-complete basis of the surface).

 

 

Figure 4. A set of three test images (the original aspect ratio has been maintained) 

 

 

Figure 5. The set of three test images of the highway whose asphalt is appropriately highlighted by 

0 0.05d   (although there are some gaps) 

 

 

Figure 6. The set of three test images of the highway whose asphalt cover is non-uniformly 

highlighted by 0 0.03d   (an unacceptable result) 

 

It is quite obvious that the quality of highlighting strongly depends on the threshold. For the tested 

task, it is sufficiently effective to set 0 0.05d   although it only concerned the definite set of bank images 

(Figure 2). For cases of other tasks, the threshold value should be decreased if the surface dominant colors 

may be easily confused with some fragments in the same image. 

In general, dichotomization can be used for setting (fine-tuning) the threshold appropriately [18, 19]. 
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Then, the next threshold 0d  is tried, either closer to 
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excessive highlighting) or 
max

0d  (to the right if highlighting by the previous threshold is deficient). Hence,  

Fig. 6: The set of three test images of the highway whose asphalt cover is
non-uniformly highlighted by d0 = 0.03 (an unacceptable result).

It is quite obvious that the quality of highlighting stron-
gly depends on the threshold. For the tested task, it is suf-
ficiently effective to set d0 = 0.05 although it only concer-
ned the definite set of bank images (Fig. 2). For cases of
other tasks, the threshold value should be decreased if the
surface dominant colors may be easily confused with some
fragments in the same image.

In general, dichotomization can be used for setting (fine-
tuning) the threshold appropriately [18,19]. First of all, the
threshold is set in the middle between a minimally possible

d
〈min〉
0 and maximally possible d〈max〉0 value:

d0 =
d
〈max〉
0 + d

〈min〉
0

2
, ∆d0 =

d
〈max〉
0 − d〈min〉0

2
. (11)

Then, the next threshold d0 is tried, either closer to d〈min〉0

(to the left if the previous threshold shows excessive hi-

ghlighting) or d〈max〉0 (to the right if highlighting by the
previous threshold is deficient). Hence,

∆d〈obsol〉0 ← ∆d0, ∆d0 ←
∆d〈obsol〉0

2
, (12)

and either

d
〈obsol〉
0 ← d0, d0 ← d

〈obsol〉
0 −∆d0 (13)

after excessive highlighting, or

d
〈obsol〉
0 ← d0, d0 ← d

〈obsol〉
0 + ∆d0 (14)

after deficiency in highlighting. Such a subroutine is re-
peated until ∆d0 becomes too insignificant (say, less than
0.0001). An alternative option is a maximal number of re-
petitions of (12) and either (13) or (14). Those two options
can be aggregated by an operation of logical conjunction.
It is worth noticing that formulae (12), (13), and (14) are
intentionally given in the form convenient for explicit low-
level programming (at the stage of implementation).

A routine for surface highlighting

In gathering a bank of images for pixel samples, only
relevant images where surface-of-interest appears differen-
tly in every image must be selected. Then tiny parts of the
surface are extracted, about 3 to 10 parts per image (or
even a few tens of parts if the surface is big enough). The
parts do not necessarily need to be the same size. They can
be as square, as well as rectangular, or like long rectangu-
lar stripes. Suppose that, after averaging over those tiny
parts (9) by formula (10), a total number of pixel samples
is S0 = S (it is no less than the number of the relevant
images selected before). Entries of the pixel palette

PS0 =
[
p11ks

]
1×1×3×S0

(15)

are sorted so that∥∥p11(s)
∥∥ ¬ ∥∥p11(s+1)

∥∥ for s = 1, S0 − 1 (16)

by the Euclidean norm

∥∥p11(s)
∥∥ =

√√√√ 3∑
k=1

p2
11ks for s = 1, S0. (17)

If ∥∥p11(s+1)
∥∥− ∥∥p11(s)

∥∥∥∥p11(S0)
∥∥ < ε

for some ε > 0 and some ε ∈
{

1, S0 − 1
} (18)

then these two pixel samples are very similar. They prac-
tically duplicate information for a highlighting tool, and
one of them is deleted. Then number S0 is correspondingly
decreased. Condition (18) is controlled for all until (after
re-indexation due to a decreased number of pixel samples
after deletions) inequality∥∥p11(s+1)

∥∥− ∥∥p11(s)
∥∥∥∥p11(S0)

∥∥ ­ ε ∀s = 1, S0 − 1 (19)
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holds. In fact, inequality (19) is a requirement of that the
pixel palette be formed of different enough entries.

Thus, the formation of pixel palette (5) is completed.
Afterwards, distances (6) and (7) are found. Eventually,
condition (8) is checked for highlighting. The described ro-
utine is graphed in Fig. 7.
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Figure 7. A routine for highlighting a surface which is of a close-to-one specific color 

 

A deficiency of the routine is that the threshold cannot be set at a value from scratch. Fine-tuning of 

the threshold is commonly needed for every new task. Another weakness is that relevance of images in 

forming the pixel palette is subjective. Thus, sometimes the pixel palette may become sparse although 

condition (19) holds. On the other hand, the pixel palette may be outer incomplete, i.e. there exist such 
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become true. In such situations, the palette is supplemented with the *s -th pixel sample. However, the 

greatest weakness of the routine is that it works poorly with surfaces like forests, mountains, sea water with 

waves, etc. 

Discussion 

The developed routine based on thresholding color-channel-wise distances by (8) is intended for 

highlighting close-to-one-specific-color surfaces. This is reminiscent of working with the chroma key [20, 

 

Gathering images with a surface-of-interest 

Selection of relevant images wherein the 

surface appears differently in every image 

Extraction of tiny parts (9) of the surface 

(a few ones per image) 

Averaging over those tiny parts by (10) 

to form a pixel palette 

Control condition (18) until (19) holds  

(and the pixel palette does not contain superfluous pixel samples) 

Compute distances (7) using GPUs 

Highlight the pixel if (8) holds 

Fig. 7: A routine for highlighting a surface which is of a close-to-one spe-
cific color.

A deficiency of the routine is that the threshold cannot
be set at a value from scratch. Fine-tuning of the threshold
is commonly needed for every new task. Another weakness
is that relevance of images in forming the pixel palette is
subjective. Thus, sometimes the pixel palette may become
sparse although condition (19) holds. On the other hand,
the pixel palette may be outer incomplete, i.e. there exist
such indices s∗ (along with respective images or their parts),
for which either inequalities

∥∥p11(S0)
∥∥ < ∥∥p11(s∗)

∥∥ and

∥∥p11(s∗)
∥∥− ∥∥p11(S0)

∥∥∥∥p11(s∗)
∥∥ ­ ε

(20)
or inequalities
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∥∥ and

∥∥p11(1)
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∥∥∥∥p11(S0)
∥∥ ­ ε

(21)
become true. In such situations, the palette is supplemented
with the s∗-th pixel sample. However, the greatest weakness
of the routine is that it works poorly with surfaces like
forests, mountains, sea water with waves, etc.

Discussion

The developed routine based on thresholding color-channel-
wise distances by (8) is intended for highlighting close-
to-one-specific-color surfaces. This is reminiscent of wor-
king with the chroma key [20, 21], but the routine would

be applicable for cases when the background “screen” is
color-heterogeneous (“sloppy”). If the surface-of-interest is
of a few dominant colors, but they are close by the color-
channel-wise distance (3), the suggested method is efficien-
tly applicable also by sufficiently filled pixel palette (5). The
efficiency apparently increases if the surface colors are more
distant (by the same distance) from the rest of the colors
in the image (like the green/blue screen for applying the
chroma key). For processing a bunch of one size images,
the highlighting routine can be efficiently parallelized for
GPU computations by assigning small groups of pixels to
computational threads and thresholding in parallel. Thus,
the operation speed will be satisfactory compared to other
techniques of highlighting.

The main specificity of the developed routine is in for-
ming pixel palette (5) and setting the same threshold at
some value. If this palette is too big, the highlighting pro-
cess will be retarded. For a shallow pixel palette, this pro-
cess will be quicker but probably not effective (resembling
the result in Fig. 5). A rational solution is to form primarily
a big pixel palette (15) and narrow its entries by conditions
(18), (19). For this, however, an additional substantiation
of is required.

Despite the normalizations in (7), (18), and (19), both
the threshold and are fine-tuned in a few stages for every
new highlighting task. This is an issue as the fine-tuning
takes its while, and thus the highlighting process is retar-
ded. Besides, an automation mode for the fine-tuning is
desirable.

Conclusion

Compared to chroma keying, the developed routine uses
complex thresholding to highlight surfaces of medium com-
plexity. With the before-formed pixel palettes, when the
threshold is fine-tuned, the highlighting routine is fully au-
tomatic. It will only require a type of highlighting task
(whether it is the sky, clouds, asphalt, calm river water,
or something similar) to be input to load the correspon-
ding pixel palette and threshold. Similar to chroma keying,
the suggested method can nonetheless work with complex
colors, so it is more robust. A promising solution for tasks
with a more complicated texture of the surface to be hi-
ghlighted, for which the suggested method works poorly, is
to provide an adaptive formation of the bank of samples.
In such cases, a bank of small regions (bigger than just a
pixel) is formed from the image with the surface-of-interest,
using the shortest color-channel-wise distance between the
image and the same size small region montaged as a “big
pixel” from a primary pixel palette.
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