
Pol. J. Appl. Sci., 2018, 4, 110-113

HIERARCHICAL ARCHITECTURE
OF AN AUTONOMOUS UNMANNED AERIAL VEHICLE (UAV)

USING MULTIWII AND RASPBERRY PI

Mateusz Andrzejewski, Adam Szmigielski

Department of Computer Science
Polish-Japanese Academy of Information Technology, Warsaw, Poland

E-mail: aszmigie@pjwstk.edu.pl

Abstract: The tasks performed by the autonomous robot are complex and multi-faceted. The robot should
perform low-level tasks related to maintaining the set flight parameters as well as make complex decisions related
to the robot task. It would be difficult to accomplish these tasks based on a simple control architecture. In many
classic solutions, a hierarchical architecture is used, where the lower layers are responsible for the operation of
sensors and actuators in accordance with the control algorithms. Higher layers are responsible for the tasks of
navigation, location and implementation of set goals. In our solutions based on open hardware and software, we
propose a robot architecture where low-level control is implemented by the Arduino controller with MultiWii
software and higher tasks are carried out by the Raspberry Pi computer using the Linux operating system. The
solution proposed is very flexible and allows quick and relatively easy prototyping. Another important advantage
is the open nature of the hardware and software.

Key words: autonomous robots, unmanned aerial vehicles, quadrocopter, hierarchical control, open hardware

DOI: 10.34668/PJAS.2018.4.3.05

The construction of an autonomous UAV

To build an autonomous, intelligent robot, we have to
solve many hardware and software problems. Very often
the division between the software and the hardware is not
obvious. An even more difficult case is presented with con-
trol algorithms, where the robot often has to perform many
tasks at the same time, where these tasks depend on them-
selves as well as affect each other.

An example of this is the task of tracking an object. The
robot must know how the object is described, must identify
it, and then change its position, i.e. maintain the trajec-
tory of the flight in accordance with the targeted objective.
In the hardware layer, the UAV has many sensors such as
orientation sensors (an acceleration sensor, a gyroscope, a
compass), an altitude sensor (distance or atmospheric sen-
sor), and a camera. Information from these sensors should
be read and sent to the flight controller, whose task is to
ensure stable UAV operation, e.g. keeping the set altitude,
flight trajectory etc.

In complex tasks, related to the identification of objects,
the determination of their mutual location or decision ma-
king, sensory information alone is insufficient. It must be
subject to various types of filtration, extraction of featu-
res, and very often the object is identified based on these
features. Decision-making processes also require searching
through complex solution spaces. All these tasks require
very large computational powers, whereas computers capa-
ble of performing such calculations are usually heavy and of
considerable size. It is not without significance if we want

to place them on relatively small size aircraft. To incre-
ase code clarity and reliability, these computers should be
independent of low-level control tasks.

In our solution, we used two computers. One maintained
flight control and its parameters, while the other ran and
tested applications. In the case of a flight controller, we
used the ATMega32u4 microcontroller with the Arduino
bootloader, where we adopted the free MultiWii software.
In the case of a computer for numerical calculations, we
decided on the Raspberry Pi 3.

Hierarchical architecture of control

Low-level tasks are performed by the MultiWii flight
controller, while tasks aimed at achieving the goal are per-
formed by the Raspberry Pi computer. The block diagram
of the UAV control is shown in Fig. 1.

In principle, the UAV presented is a fast, cheap and
convenient platform for testing complex localization algo-
rithms, object tracking algorithms and other intelligent al-
gorithms. It is obvious that we are more focused on writing
and testing algorithms than on building a UAV. To achieve
this, we focused on closing the stage of building a UAV
and organizing the environment for testing algorithms. In
principle, when using a UAV, we should not concentrate on
any interference with the hardware layer and the flight con-
troller, but only on the tested algorithm. This is possible
after completing the design work with the equipment and
determining the communication protocol between the flight

c© Copyright by the Lomza State University of Applied Sciences

Pol. J. Appl. Sci., 2018, 4, 110-113 Andrzejewski M. et al.: Hierarchical Architecture of an Autonomous. . .

II M. Andrzejewski, A. Szmigielski

In complex tasks, related to the identification of objects, the determination of

their mutual location or decision making, sensory information alone is insuf- ficient.
It must be subject to various types of filtration, extraction of features, and very
often the object is identified based on these features. Decision-making processes
also require searching through complex solution spaces. All these tasks require very
large computational powers, whereas computers capable of perform- ing such
calculations are usually heavy and of considerable size. It is not without significance
if we want to place them on relatively small size of aircraft. To in- crease code clarity
and reliability, these computers should be independent of low-level control tasks.

In our solution, we used two computers. One maintained for flight control
and its pa- rameters, while the other for running ran and testing tested
applications. In the case of a flight controller, we used the ATMega32u4
microcontroller with the Arduino boot- loader, where we adopted the free
MultiWii software. In the case of a computer for numerical calculations, we
decided on the Raspberry Pi 3.

1.1 Hierarchical architecture of control

Low-level tasks are performed by the MultiWii flight controller, while tasks
aimed at achieving the goal are performed by the Raspberry Pi computer. The
block diagram of the UAV control is shown below:

Fig. 1. Architecture of our system
Fig. 1: Architecture of our system.

control and the host. We have adopted the MultiWii serial
communication protocol [1].

Low-level control architecture

As mentioned earlier, we do not assume modifications
of low-level UAV control during normal use. However, such
modifications related to the inclusion of new elements are
possible and do not require a lot of effort. In this part of
the article, we will present the construction of the UAV
hardware layer, the manner of their organization and the
implementation of control tasks.
Body frame of UAV We used popular carbon fiber frame
– QAV 250 – Mini Quadcopter FPV. The QAV 250 is a
symmetric 250mm size airframe, measured motor shaft to
motor shaft diagonally.
Sensors We used typical sensors necessary for the proper
operation of the UAV.
Inertial Measurement Unit IMU GY-88 is 10 DOF a
motion tracking module, that combines a 3-axis gyroscope
and 3-axis accelerometer. It also has a 3-axis digital com-
pass and a high-accuracy chip to detect barometric pressure
and temperature.
Sharp distance sensor GP2Y0A710K0F – smart infra-
red sensor for distance measurement. We use it to stabilize
altitude in heights of up to 5 m.
GPS NEO6MV2 – simple module for fixing GPS posi-
tion.
Actuators – In our project we used a brushless motor.
motors – we used 4 brushless motor 2204 2300KV Motor
with 12A controller.
Gimbal servo Tower Pro SG90 9g – to stabilize the
camera a small servo is used.
Radio control For safety reasons, we used two indepen-
dent wireless communication lines. The first is a 6-channel
radio control system typically used for controlling flying

models. A digital system with Automatic Frequency Hop-
ping technology, using 2.4 GHz radio band, provides unin-
terrupted connectivity with a range of up to 1000 m. This
radio can be used in parallel for autonomous work; it sup-
ports the launch of the UAV as its landing. In the absence
of communication with the UAV, and when the UAV does
not perform any autonomous tasks, the UAV automatically
lands on the ground.

The second wireless line is used to communicate Rasp-
berry Pi with a ground control station. We used module
HC-12, with theoretical working distance up to 1000m. For
safety reasons, the UAV can perform the algorithm autono-
mously if itis in range of the radio. In addition, it is possible
to send short information about the failure or state of the
UAV. In order not to interfere with the modeling radio,
the serial communication module uses frequency 433MHz.
Low-level controller As a low-level flight controller we
used a system containing a microcontroller controller AT-
Mega32u4. The use of simplified microcontroller architec-
ture ensured a high level of reliability and high speed exe-
cution of the code which translates directly into the safety
of the drone moving in three-dimensional space. The main
tasks performed by the low level controller are:

• stabilization of the UAV vehicle.
The drone we are considering is aerodynamically unsta-
ble in both static and dynamic contexts. Its effective
use is based on using fly by wire control and active sta-
bilization technology that allow the drone to return
to the equilibrium state due to the active reaction of
the controller to external disturbing forces. Two sta-
bilization modes have been implemented. The first is
based on the use of the information of accelerometer
sensor value change for each axis of the Cartesian co-
ordinate system associated with the UAV. Due to the
high responsiveness it is mainly used during a flight
actively controlled by a human operator (acro mode).
The second based on the use of a three-axis gyroscope
ensures a high level of stabilization and is mainly used
for autonomous UAV flights (angle mode). There is
also an intermediate mode that is a linear assembly
of the two above (for small control signals dominance
angle mode and for large acro mode). To maintain the
position in the Z axis (height) in the range 0-5m, we
use the data from the optical position sensor (ultra-
sonic sensors have a limited field of application due to
the interference generated by the propeller unit). In
the range above 5 m we use data from the barometric
sensor.
The values of the observed physical values are appro-
ximated from the sensors with the help of a comple-
mentary filter, enabling the elimination of measure-
ment errors of one sensor by integrating the indica-

111

Andrzejewski M. et al.: Hierarchical Architecture of an Autonomous. . . Pol. J. Appl. Sci., 2018, 4, 110-113

tions of other sensors and taking into account pre-
vious measurements. For example, a gyro drift is mi-
nimized by taking into account data from the accele-
rometer.
The more effective Extended Kalman Filter (EKF) al-
gorithm was rejected due to its computationally expen-
sive cost and the limited improvement in the quality
of results. To increase the accuracy of the sensor re-
adings, the pre-start activation procedure includes the
calibration of the accelerometer and barometric sen-
sors.

• RC commands handling.
A supported RC receiver transmits to the controller
signals in the form of PWM (pulse-width modula-
tion) corresponding to the rotation round each axis
of the Cartesian coordinate system associated with
the drone. The signal responsible for controlling the
power of engines and additional signals used as func-
tion switches is implemented on the drone platform.
Rotation control is carried out by maintaining relative
speed differentiation for each engine pair. Due to the
aerodynamic design, the deflection of the drone from
the XY plane causes it to move in a certain direction.

• high level controller commands handling.
Due to the UART interface connection with the higher-
level controller, the controller receives commands which
control the behavior of the UAV according to the
planned algorithm. The connection is two directio-
nal; a lower level controller continuously sends infor-
mation to the higher-level controller from its sensors ,
and control pulses are received using the RC receiver.

• emergency situation handling.
An important feature of the lower level controller is
the handling of emergency situations. If the defined
parameters are exceeded for information from sensors
or control systems, the drone can perform the planned
action. For example, for a situation of loss of signal
from the RC receiver (no connection), the drone ma-
kes a steady landing at a low descent speed. In the
case of the version of the UAV equipped with GPS,
it is possible to return to the home position before
starting the landing procedure.

High-level control architecture

Raspberry Pi 3 has a powerful Broadcom processor with
underlying architecture of the BCM2837 with a quad-core
ARM Cortex A53 (ARMv8) cluster and 1 GB RAM me-
mory. The ARM cores run at 1.2GHz [2]. That makes Rasp-
berry Pi 3 comparable to a PC computer due to computing
effectiveness, and it is much smaller due to weight, dimen-
sions and power consumption. Consequently, it is an ideal
computer unit to be applied in unmanned aerial vehicle as

a control system. Additionally, Raspberry Pi 3 can run Li-
nux with many programming libraries and languages. In
our project we often use OpenCV, MultiWii libraries with
Python language programming.

The Raspberry Pi 3 computer is connected directly to
the camera. This enables real-time image analysis. Conse-
quently, it is possible to use image-based control algorithms,
object tracking, classification or decision making. In addi-
tion, the camera is placed on the gimbal, which is based on
information from the IMU sensors (gyroscope and accele-
rometer), enables the camera to be kept in a fixed position,
i.e. perpendicular to the earth’s surface.

Tasks controlled by high-level controller. The ta-
sks performed by Raspberry Pi are not strictly defined.
They depend on what the UAV is used for. It is an open
experimental field, and the presented system, in our opi-
nion, is an interesting solution for testing the operation of
new control algorithms. In general, it can be concluded that
the tasks performed by the Raspberry controller are tasks
that require some kind of intelligence. Such as:

• Object trucking;
• Relative localization;
• Goal-oriented tasks;
• Deep learning algorithms.

Autonomous Systems

To be able to talk about an autonomous robotic sys-
tem, all systems (mechanical, electronic, sensory, algorith-
mic, etc.) should be integrated into an efficient whole. As
mentioned earlier, Arduino MultiWii performs low-level ta-
sks, and you can use intelligent algorithms with Raspberry
Pi.

VI M. Andrzejewski, A. Szmigielski

the IMU sensors (gyroscope and accelerometer), enables the camera to be kept
in a fixed position, eg.i.e. perpendicular to the earth's earth’s surface.

Tasks controlled by high-level controller The tasks performed by
Raspberry- berry Pi are not strictly defined. They depend on what the UAV is to
be used for. It is an open experimental field, and the presented system, in our
opinion, is an interesting solution for testing the operation of new control
algorithms. In general- eral, it can be concluded that the tasks performed by the
Raspberry controller are tasks that require some kind of intelligence. You can
include themSuch as:

– Oobject trucking
– Relative localization
– Goal-oriented tasks

– Ddeep learning algorithms

1.4 Autonomous Systems

To be able to talk about an autonomous robotic system, all systems (mechanical,
electronic, sensory, algorithmic, etc.) should be integrated into an efficient whole.
As mentioned earlier, Arduino MultiWii has performs low-level tasks, and you
can use intelligent algorithms with Raspberry Pi.

Fig. 2. Autonomous UAV

For full system integration, a communication protocol between Raspberry Pi
and Arduino is needed.

MultiWii Serial Protocol The MultiWii project provides such a protocol.
Depending on your the needs, it can be modified. The general format of an MultiWii
Serial Protocol message is:

Fig. 1: Autonomous UAV.

For full system integration, a communication protocol
between Raspberry Pi and Arduino is needed.

112

Pol. J. Appl. Sci., 2018, 4, 110-113 Andrzejewski M. et al.: Hierarchical Architecture of an Autonomous. . .

MultiWii Serial Protocol. The MultiWii project pro-
vides such a protocol. Depending on the needs, it can be
modified. The general format of an MultiWii Serial Proto-
col message is:

< preamble >, < direction >, < size >,
< command >, < crc >

where:

preamble = the ASCII characters ‘$M’
direction = the ASCII character ‘<’ if to the MWC or

‘>’ if from the MWC
size = number of data bytes, binary. Can be zero as in the

case of a data request to the MWC
command = message id as per the table below
data = as per the table below. UINT16 values are LSB

first
crc = XORof < size >,< command > and each data byte

into a zero’ed sum

It should be noted that recently libraries for communication
with MultiWii have been created and are constantly revised
based on a defined protocol.

Using UAV and algorithm testing

Having an autonomous aircraft platform, we can start
writing and running applications on it. In this part of the
article we will present a few remarks regarding the writing
and running of the program, monitoring the tasks perfor-
med and dealing with security issues.

Secure running application

Because Raspberry has a full Linux system installed, it
is possible to choose any programming language and run-
time environment. We decided on Python. The Raspberry
Pi computer has a Wi-Fi module, so we can log in to Ra-
spberry remotely and run any program. For safety reasons,
in order to prevent any uncontrolled behavior of the UAV
we assume that the UAV can behave autonomously as long
as it is within the range of the RS wireless connection. The
theoretical range of this connection, declared by the manu-
facturer, is 1000m. In the absence of communication Rasp-
berry Pi does not take any control. Then we can use ma-
nual radio control from the MultiWii level. In the absence
of communication and with this radio, the UAV launches
the automatic landing procedure (failsafe).

UAV state monitoring

In the case of checking the correctness of the algori-
thm’s operation, the monitoring of flight parameters, ca-
mera view, etc. we decided to save the parameters that

interested us on the SD card. The analysis of the algori-
thm’s operation is done offline. Image streaming while the
algorithm is running, can significantly load the processor;
it requires an additional wireless video link that can poten-
tially introduce interference, especially in the 2.4 GHz band
and additionally it loads the UAV and consumes power.

Conclusion and further work

In this work, we presented a proposal to build a UAV
platform using hierarchical control architecture. For the
construction of the UAV, we used both software and har-
dware generally available under the terms of free licenses.
This allows you to quickly, cheaply and efficiently build a
UAV that can be used for more complex tasks.

We are currently working on tracking algorithms using
deep learning techniques and locating and navigating a lar-
ger group of UAVs.

Literature

[1] MultiWii Serial Protocol
http://www.multiwii.com/wiki/index.php?title=Multi
wii Serial Protocol.

[2] Raspbery PI
https://www.raspberrypi.org/products/raspberry-pi-3-
model-b/.

Received: 2018
Accepted: 2018

113

