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Abstract: The article presents the properties of elliptic curves and the laws of arithmetic in their structures
forming an additive group characterized by relatively low computational costs of performing group operations.
The concept of isogens is introduced, the structure of a quotient grid in the body of complex numbers is defined
and the properties of group activities in these structures are enumerated. Next, reference was made to the
methods of exchanging cryptographic keys based on graph structures. In the next part, the Supersingular Isogeny
Key Exchange is introduced, and a comparison of three versions of the Diffie-Hellman key phrase protocol is
made — classical, based on elliptic curves and based on isogeny. Finally, research problems were presented in the
area where any minimal progress would bring a greater guarantee of secure communication — both now and in

the future when quantum computers will be available.
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Introduction

The idea of building quantum computers was born as
early as the 1980s, when Paul Benioff [1] proposed the possi-
bility of building a machine that uses the laws of quantum
physics to operate. However, it was the Nobel Prize winner,
Richard Feynman, who during one of his famous lectures
at the Massachusetts Institute of Technology in 1981 pre-
sented the theoretical model of transforming the quantum
system into a classic computer model, he is considered to
be the creator of the idea of building a quantum compu-
ter. The dynamic development of science and technology
is leading to a time when quantum computers will stop
being toys in the hands of scientists and become powerful
tools. These tools may change the visions of world develop-
ment. At the same time, the development of work on the
construction of quantum computers is accompanied by an
increasing interest in quantum algorithms which, based on
the nonintuitive phenomena of quantum mechanics such as
the superposition of states, interference of probability am-
plitudes, or quantum entanglement, promises the ability to
solve a new class of problems.

Due to the specific properties of quantum computers,
some problems currently computationally difficult can be
solved in a much shorter time, which in practice can wi-
den the scope of computer — solvable problems. A classic
example of such algorithms is the Shor factorization algo-
rithm, used for the factorization of numbers. The imple-
mentation of an algorithm that produces similar results on
classical computers requires a very long time, often exce-
eding even the average life expectancy of a human being,
while on quantum computers it can be done in such a short

time that modern cryptographic algorithms based on com-
putationally difficult problems will become useless.

Another class of algorithms designed for quantum com-
puters are post-quantum algorithms, characterized by spe-
cific universality since they can be used in both classical
and quantum computers. This universality puts them at
the centre of attention of many researchers dealing with
cybersecurity issues.

Description of the problem

On the one hand, the progress in the work on the con-
struction of quantum computers is forcing scientists to deal
with new algorithms resistant to attacks from quantum
computers. On the other hand, the development of devi-
ces of the Internet of Things contributes to the search for
algorithms that generate low computational costs of coding
and decoding information.

Modern algorithms are based on so-called computatio-
nally difficult problems. One of the computationally diffi-
cult problems in the modern world is the problem of fac-
torization. The asymmetric algorithm RSA is based on the
problem and was designed by Ron Rivest, Adi Shamir and
Leonard Adleman in 1977. Another computationally diffi-
cult example is the discrete logarithm problem — this is the
base for Elliptic Curve Cryptography (ECC). These pro-
blems do not guarantee security against attacks from qu-
antumdo or quantum computers. Additionally, the costs of
encrypting and decrypting data in RSA are so high that
the application of this algorithm in devices with limited
computational resources becomes difficult.

© Copyright by the Lomza State University of Applied Sciences



Pol. J. Appl. Sci., 2018, 4, 96-101

Maleszewski W.: Analysis of some contemporary cryptographic problems. . .

Motivation and methodology

An optimal but at the same time very difficult solu-
tion to the defined problem is the development of a com-
paratively low-cost algorithm on the side of the sender and
recipient of correspondence and, at the same time, one ba-
sed on post- quantum problems. Such an algorithm, on the
one hand, could be used in Internet of Things (IoT) de-
vices and, on the other hand, it would provide protection
making it possible to eliminate attacks made in the future
using quantum computers.

Related Work

As already mentioned, the idea of building quantum
computers has quite a rich history, which is why some so-
lutions have already been developed. We can divide post-
quantum cryptography algorithms, recognized today as clas-
sical, into four basic groups:

1. cryptographic algorithms based on hash tree function
(hash-based cryptography); an example of such an al-
gorithm is the public key system based on the hash
tree or Merkle tree [2];

2. algorithms based on linear codes (code-based cryp-
tography); an example of such an algorithm is the
McEliece algorithm (1978), which uses Goppa codes
(3];

3. cryptographic algorithms based on a lattice (lattice-
based cryptography); an example is the Hoffstein-
Pipher-Silverman NTRU algorithm (1998) [4];

4. algorithms based on multivariate quadratic polyno-
mials (multivariate — quadratic — equations crypto-
graphy). An example is the HFE Patriana public key
signature system (1996) [5].

The NTRU algorithm was the first algorithm of asymmet-
ric cryptography the mathematical foundations of which
simultaneously extended beyond the factorization problem
and the discrete logarithm problem. Its idea is based on the
shortest vector problem in a lattice. In literature, we can
also find cryptographic algorithms based on the algebraic
structure of a lattice defined by the relations of partial or-

der.
In the latest literature, we can still find algorithms based

on supersingular isogeny graphs that will be presented later
in this work. Supersingular isogeny graphs are a class of ex-
pander graphs that have emerged in computational num-
ber theory and have been applied in elliptic-curve crypto-
graphy. Vertices represent supersingular elliptic curves over
finite fields and edges represent isogenies between curves

Elliptic curves

An elliptic curve E over a field F' can be given by the
Weierstrass equation:

y2 +aixy + azy = ;v3 + a2m2 + asx + ag,

where the coefficients a; € F for i = 1,2,3,4,6. Koblitz
[6] and Miller [7] were the first to show that the group
of rational points on an elliptic curve E over a finite field
F, could be used for the discrete logarithm problem in a
public-key cryptosystem.

The canonical short Weierstrass form of an elliptic curve
[8] is given by the equation:

y? =2+ ax + 0,

together with a point at infinity O where the constants a, b
meet the additional condition:

4a® 4 276 # 0.

The algorithm of adding points on the elliptic curve

Let E be an elliptic curve, and M, Ms € E, where
My = (z1,11), M2 = (22,y2), M3 = (z3,y3) and M3 =
My + Ma, [9,10] then:

)

$3=A2—$1—$2
ys = AMx1 —23) — 1

where:

(w1,y1) # (22, £y2)
(x1,91) = (22, +y2)

2y1 lf

Y2—Yi1 ;
_ To—Tq Zf
- 3z2+a .

Maps between elliptic curves

Definition 1. (j-invariant). Let E : y?> = 2% +ax +b be an
elliptic curve, The j-invariant of E is given by the formula:

4a®
(F) =1728————.
IE) 4% 1 2702
Two curves are isomorphic over the algebraic closure k if
and only if they have the same j-invariant [11].

Isogenies

Let ¢ : E — E’ be a map between elliptic curves. These
conditions are equivalent:

e ¢ is a surjective group morphism,

e ¢ is a group morphism with finite kernel,

e ¢ is a non-constant algebraic map of projective varie-
ties sending the point at infinity of F onto the point
at infinity of E’,
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If they hold ¢ is called an isogeny.

Definition 2. Two curves are called isogenous if there exi-
sts an isogeny between them.

Example 1. Let A, B € F, be such that B # 0 and D =
A% — 4B # 0. Consider the elliptic curve over F, :

E:y? =z(2® + Az + B).

The point (0,0) has order 2. There is an elliptic curve E’
and an isogeny ¢ : E — E' such that ker(¢) = {0g, (0,0)}.
One can verifity that

p(z,y) = (y2 M) _ ($2+A$+B7y(3—z2)>

2 a? x x?
has the desired kernel [12], and the imagine curve is
E' =Y?=X(X?-2AX + D).

Example 2. Another example of isogeny over F11 is shown
in the next figure:

E:y’=z+z¢ Byt =2% 4z

x

. 2 w2
Fig. 1: ¢(z,y) = ( ;17y721)

Definition 3. (Supersingular isogeny problem) Given a
finite field K and two supersingular elliptic curves E, E’
defined over K such that |E| = |E’|, compute an isogeny
¢: E— E [13].

Definition 4. (Complex lattice) A complex lattice A is a
discrete subgroup of C that contains an R — basis. Explici-
tly, a complex lattice is generated by a basis (w;,ws), such
that wy # Aws for any A € R, as

A= wlZ + WQZ.

Definition 5. (Complex torus). Let A be a complex lattice,
the quotient C/A is called a complex torus.
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Fig. 2: A complex lattice (black dots) and its associated complex torus
(grayed fundamental domain)

!

a+b

Fig. 3: Addition and scalar multiplication in a complex lattice

Definition 6. An Expander graph is a sparsely populated
graph that is well connected [14].

Key exchange from Schreier graphs

Public parameters:

e A group G = (g) of order p;
e A subset S C (Z/pZ)*.

1. Alice takes a secret random walks S4 :
length O(logp);

2. Bob does the same;

They publish g4 and gp;

4. Alice repeats her secret walk s, starting from gp.
Bob repeats his secret walk sp starting from g4.

g — ga of

@

Definition 7. A sparse graph is a graph in which the total
number of edges is few compared to the maximal number
of edges [14].

Example 3. Consider a simple graph G with n vertices and
2 edges originating from each vertex. There are 2n edges in
this graph. If this graph was a complete graph, every vertex
connected to every other vertex, we would need n! edges. It
is clear that this graph is sparse since n! > 2n.
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g* 9

Fig. 4: The Schreier graph of (S;G \ {1}), where G = (g), ord(g) = 7.

— o
1 9a gaogp|®

2
Fig. 5: Key exchange from Schreier graphs ga o gg = (9°23) 0 (¢°" %) =
5.23.32
g9

Supersingular isogeny Diffie-Hellman key exchange
(SIDH)

Supersingular isogeny Diffie-Hellman key exchange (SIDH)

is a post-quantum assymetric cryptographic algorithm. Out
of all post-quantum key exchanges, SIDH uses the smallest
keys; with compression, SIDH uses 2688- bit public keys
at a 128-bit quantum security level. These properties make
this protocol a natural candidate to replace Diffie Hellman
(DHE) and elliptic curve Diffie Hellman (ECDHE), which
are widely used in Internet communication [15]. Let ¢ and
{5 be two small prime, f be integer cofactor and let p be a
prime such that:

p=LMB F £ 1.

For £ € {{4,¢p} and e € {e4,ep} the corresponding expo-
nent, we have that the full £°— torsion group on F is defined
over Fp>. Since £ is coprime to p this

E[t°] = (Z)°Z) x (Z](°T).

Let P,@Q € E(£°) be two points that generate E(¢¢) such
that the above isomorphism is given by:

(Z)e°Z) x (Z)¢°Z) — E[e°]
and described by the formula:
(m,n) — [m]P + [n]Q.

The public parameters are the supersingular curve Ey/F,2
whose group order is (£5¢5F f)?, two independent points
Py and Q4 that generate Ep[¢%'], and two independent
points P and Qp that generate Ey[¢¢?]. To compute pu-
blic key, Alice chooses two secret integers

ma,na € Z/IZ,
not both divisible by £4, such that
Ry = [mA]PA + [’I”LA]QA

has order 63‘4. Her secret key is computed as the degree KZA
isogeny:

¢a:FEg— Ea
whose kernel is R 4, and her public key is the isogenous cu-
rve E4 together with the image points ¢4 (Pg) and ¢4 (Qp).

Similarly, Bob chooses two secret integers mp, np € Z/(¢PZ
not both divisible by £ , such that:

Rp = [mp|Pp + [nB|Qp
has order ¢4 . He then computes his secret key as the degree
¢p: Ey — Ep

whose kernel is Rp, and his public key is F'p together with
¢5(Pa) and ¢p(Q4). To compute the shared secret, Alice
uses her secret integers and Bobs public key to compute

the degree 53‘4 isogeny qS/A : Ep — Ep4 whose kernel is the
point:

[malppPa+[nalppQa = ¢p([ma]Pa+[nalQa) = ¢pQa.

Similarly, Bob uses his secret integers and Alice’s public
key to compute the degree £57. isogeny ¢ = Ep — Eag
whose kernel is the point

[mBloaPs + [nBloaQB = ¢4QB

It follows that EFg4 and E4p are isomorphic, so Alice and
Bob can compute a shared secret as the common j-invariant
J(Epa) = j(Eap) [17-19].

The following table shows a comparison of asymmetric al-
gorithms:
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Table 1: Comparison of Diffie-Hellman algorithms[16]

DH ECDH SIDH
Elements mci)rgitj%esri%e in c%?i?etsgrpoup in is?c%«ﬁi I(flass
Secrets exponents x skalars k isogenies ¢
Computations g,x—>g k, P — [K]P ¢,E > ¢(E)
Hard problem | 9" 9 g given P, [KIP givefr}nEd' Z(E)

Current isogeny problems

Researchers working in this area indicate the following
research problems [20-22]:

1. Isogeny computation Given an elliptic curve F
with Frobenius endomorphism 7, and a subgroup G C
E such that 7(G) = G, compute the rational frac-
tions and the image curve of the separable isogeny
¢:E— E/G.

2. Explicit isogeny Given two elliptic curves E, E’ over
a finite field, isogenous of known degree d, find an iso-
geny ¢ : E — E’ of degree d .

3. Isogeny walk Given two elliptic curves E; Ey over
a finite field k,such that #F = #FE’, find an isogeny
¢ : E — E’ of smooth degree.

Summary

Security of communication is very important in the mo-
dern world, in which cryptography is no longer the domain
of only armies and agents, but it serves directly the gene-
ral public — ensuring secure communication on the Internet
or enabling the functioning of modern payment systems.
Cryptography helps build a more trusted world. When uqu-
antum computers appear, many modern methods of i in-
formation protection will lose their power, and we will be
forced to use newer coding techniques such as, for example,
the SIDH algorithm. Its safety is connected, among others,
with the problem of finding isogenic mapping between two
supersingular elliptical curves. The research is aimed at for-
mulating algebraic properties that reduce the difficulty of
this problem.
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