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Cellular automaton:
General concepts and terminology

The first concepts that gave the basis for cellular auto-
maton (CA) design were created by Stanisław Ulam in 1962
during his research on crystalline structures [1]. While the
model used there met all requirements of cellular automa-
ton, it was John von Neumann that in 1966 proposed a
more general way of defining CA [2].

The algebra of CA is given by a triple:

A = {S, t,=}, (1)

where S is the universe containing all possible states of
a single cell, t is the transition function and “=” denotes
equality relation between two cells. A specific automaton
can be described as a pair:

C = {A,M}, (2)

where A is the algebraic system that describes the CA,
whileM is the cell matrix on which operations are executed.
A is usually called a ‘rule set’ of the automaton, and this
term will be used in this article. The symbol An denotes
the number of a cycle in which a given state combination
will appear and M0 is initial condition of cell matrix.

While a transition function is defined for a single cell, we
can use it with a whole cell matrix parameter. In a such case
the result of the function will be another cell matrix with
all cells transformed according to the transition rules. The
result of such a transformation is considered a subsequent
cycle so that:

t(An) = An+1. (3)

Cellular automaton:
Conway’s Game of Life

One of the most famous and well-analysed CA is the
Conway’s Game of Life (CGL) [3]. The CGL is a particular
case of the CA which is defined as follows [4]:

1. cells are the elements of the two dimensional grid
(d=2);

2. N(c) is set of the neighbour cells for the cell c;
3. the Moore neighbourhood (8-neighbour cells), where

neighbours of a cell c are all cells that have a com-
mon edge or vertex with c, or alternatively by the von
Neumann neighbourhood (4-neighbour cells), where
neighbours of a cell c are all cells that have only a
common edge with c, can be used;

4. S = {0, 1} where the state 0 means that the cell is
dead and the state 1 means that the cell is alive;

5. the cell is alive or dead according to the following
rules:

(a) a dead cell with two living neighbours becomes
alive;

(b) a living cell stays alive if it has two or three living
neighbours;

(c) in all other cases the cell is dead;

6. the function ft determines the state s(c, t) of each cell
c in the instant t as follows:

s(c, t+ 1) = f({s(c′, t) : c′ ∈ N(c)}) (4)

In the CGL one can observe the following features:

1. each cell may live indefinitely, and this produces still
life configurations;
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2. the life of a cell is determined only by the state of its
last neighbourhood;

3. automaton is deterministic;

Proposed generalization

In this section a generalised version of the CGL, cal-
led the Generalised Game of Life (GGL), is proposed. In
particular the following assumptions are made:

• each cell will have a finite and randomly assigned li-
fespan from the instant of becoming alive; when the
lifespan of a cell reaches zero it will be considered
dead;

• the life history of each cell is determined by a non-
Markovian process and not by the last preceding state
only;

• life history of each cell is determined by a non-Markovian
process and not by the last preceding state only;

• workings of generalized automaton will be determined
by the random transition functions.

To define the properties of an automaton that meet the
requirements given above, the following four elements are
needed:

G ≡ (Pl, Ps, fa, N), (5)

where Pl is the distribution of the probability of lifespan
values given to a cell during its spawning, Ps is the distri-
bution of spawning probability in relation to the number
of neighbours. By fa ageing function that reduces a cell’s
lifespan force is understood, and if the cell life force drops
to zero, the cell becomes dead. Distributions Pl,Ps and the
function fa together form the transition function Ta. In ad-
dition Pl generates Sl ≡ 〈Lmin, Lmax〉, where Lmin is the
smallest value of the life force that can be given to a new
cell, and Lmax is the largest one. In all the examplespresen-
ted here, Pl is adopted as a Gaussian distribution function.
Consequently, when describing settings for specific auto-
maton, parameters ml and σl of a Gaussian distribution
function to describe initial lifetime distribution is used.

Unlike CGL, a cell can end up in more than two states
because of possible distinct values of life force L. This does
not concern functions Pl, Ps, fa as they check only whether
the cell is dead or alive, in other words, whether the life
force of cell equals zero or not.

Conway’s Game of Life as a particular case of our
generalization

As the automaton defined in this paper in a generali-
sation of a CGL it should be possible to recreate CGL as
special case of GGL. To get an automaton that behaves
like Conway Game of Life, one has to assign Pl = 1 which

leads to the set of states S = (0, 1). As for spawning distri-
bution and ageing function we have to configure them as
presented in Table 1. Setting Pl to 1 to 1 reduces possible

Table 1: Configuration of the Conway’s Game of Life

n 0 1 2 3 4 5 6 7 8 

Ps 0 0 0 1 0 0 0 0 0 

fa 1 1 0 0 1 1 1 1 1 

 

 

n 0 1 2 3 4 5 6 7 8 

Ps 0.0001 0.001 0.01 0.3 0.5 0 0 0 0 

fa 1 1 1 1 1 1 1 1 1 

 

 

0 1 2 3 4 

5 6 7 8 9 

10 11 12 13 14 

15 16 17 18 19 

20 21 22 23 24 

 

 

 

n 0 1 2 3 4 5 6 7 8 

Ps 0 0 0.015 0.97 0.015 0 0 0 0 

 

n 0 1 2 3 4 5 6 7 8 

Ps 0.05 0.1 0.2 1.0 0.2 0.1 0.05 0.025 0.0125 

fa 1 1 1 1 1 1 1 1 1 

 

states to only two; hence, setting values of Ps and fa to
only 1 or zero changes the automaton into a deterministic
one. When governed by those rules our automaton, it will
behave exactly like Conway’s Game of Life.

Stochastic automaton

One of main advantages of GGL over CGL is its abi-
lity to create a stochastic automaton within the same rule
set. An example of such an automaton is one that exhibits
simple chain reaction like behaviour.
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Figure 1. Automaton before the chain reaction started

create such automaton one has once again set life energy distribution to constant Pl = 20. However
this time spawn probability can have values other than 0 or 1, see Table 4.

Table 2. Con�guration of the wavefront automaton

n 0 1 2 3 4 5 6 7 8

Ps 0.0001 0.001 0.01 0.3 0.5 1 1 1 1

fa 1 1 1 1 1 1 1 1 1

It can be concluded from this con�guration that not only the resulting automaton is stochastic
but also, unlike Conway's, it cannot have immortal cells (no still life forming) and is not stable in void
state as it is possible for cells to spontaneously rejuvenate even without any neighbours. Resulting
automaton will generate cell matrix where during each cycle a small number of cells will come to
life. Because all cells have limited lifetime this process will be countered by death of cells that were
rejuvenated 20 cycles before. Until, by chance, enough cells spawn close to one another, cell matrix will
be �lled with living cells scattered sparsely along it. However, when a larger group of cells forms, then
it becomes the epicentre of a chain reaction. While cells belonging to the epicentre will die just like
all other cells, the structure of epicentre will not disappear, instead it will replicate itself, becoming in
time an oscillator. Besides the oscillating behaviour, it will also create the rings, like structures moving
away from it in the wavefront pattern similar to waves on surface of water after a rock was thrown
into it, see Fig. 4. This behaviour may be considered similar to Conway's glider guns as after covering
whole matrix with cells that were rejuvenated as result of epicentre oscillations, the automaton begins
to behave in the deterministic way.

5. Stability of stochastic and semi-deterministic automaton

5.1. Stochastic automaton

One of most interesting properties of CGL is the ability to create stable cell formations. They can be
divided into the following categories:

Fig. 1: Automaton before the chain reaction started.

To create such an automaton one has once again to set
life energy distribution to constant Pl = 20. However, this
time spawn the probability can have values other than 0 or
1, see Table 2.

Table 2: Configuration of the wavefront automaton.

n 0 1 2 3 4 5 6 7 8 

Ps 0 0 0 1 0 0 0 0 0 

fa 1 1 0 0 1 1 1 1 1 

 

 

n 0 1 2 3 4 5 6 7 8 

Ps 0.0001 0.001 0.01 0.3 0.5 0 0 0 0 

fa 1 1 1 1 1 1 1 1 1 

 

 

0 1 2 3 4 

5 6 7 8 9 

10 11 12 13 14 

15 16 17 18 19 

20 21 22 23 24 

 

 

 

n 0 1 2 3 4 5 6 7 8 

Ps 0 0 0.015 0.97 0.015 0 0 0 0 

 

n 0 1 2 3 4 5 6 7 8 

Ps 0.05 0.1 0.2 1.0 0.2 0.1 0.05 0.025 0.0125 

fa 1 1 1 1 1 1 1 1 1 

 

It can be concluded from this configuration that not
only the resulting automaton is stochastic, but also, unlike
Conway’s, it cannot have immortal cells (no still life for-
ming) and is not stable in a void state as it is possible for
cells to spontaneously rejuvenate even without any neigh-
bours. The resulting automaton will generate a cell matrix
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where during each cycle a small number of cells will come
to life. Because all cells have a limited lifetime, this process
will be countered by the death of cells that were rejuvenated
20 cycles before. Until, by chance, enough cells spawn close
to one another, the cell matrix will be filled with living cells
scattered sparsely along it. However, when a larger group
of cells forms, then it becomes the epicentre of a chain reac-
tion. While cells belonging to the epicentre will die just like
all other cells, the structure of epicentre will not disappear,
instead it will replicate itself becoming in time an oscil-
lator. Besides the oscillating behaviour, it will also create
rings, like structures moving away from it in a wavefront
pattern similar to waves on surface of water after a rock
has been thrown into it, see Fig. 2. This behaviour may be4 Piotr Gny±

Figure 2. Automaton with multiple epicenters

• still life - patterns that remain unchanged;
• oscillators - patterns that oscillate between two or more con�gurations;

It should be noted that other patterns like spaceships (patterns that move through cell array) or guns
(oscillators that generate spaceships) can be stable depending on border conditions. However, in this
experiment we will only focus on those two that are not in�uenced by border conditions as we want
to limit the number of parameters to minimum. The blinker will be analysed in more detail now

Figure 3. Blinker pattern as an example of an oscillator

The numbering of cells in 5× 5 automaton is shown in Table 3.

Table 3. Cell array

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

If automaton start with the state S0 = [7, 12, 17], then in case of the deterministic CGL its state
diagram will look as follows, see Fig. 4.

Fig. 2: Automaton with multiple epicentres.

considered similar to Conway’s glider guns as after covering
whole matrix with cells that were rejuvenated as result of
epicentre oscillations, the automaton begins to behave in a
deterministic way.

Stability of stochastic and semi-deterministic
automaton:

Stochastic automaton

One of most interesting properties of CGL is the ability
to create stable cell formations. They can be divided into
the following categories:

• still life – patterns that remain unchanged;
• oscillators – patterns that oscillate between two or

more configurations;

It should be noted that other patterns like spaceships
(patterns that move through cell array) or guns (oscillators
that generate spaceships) can be stable depending on bor-
der conditions. However, in this experiment we will only
focus on those two that are not influenced by border con-
ditions as we want to limit the number of parameters to a
minimum. The blinker will be analysed in more detail now.
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Fig. 3: Blinker pattern as an example of an oscillator.

When referring to cells by numbers value 0 indicates top
left cells and values will increment towards the right (see
Table 3).

Table 3: Cell array.

n 0 1 2 3 4 5 6 7 8 

Ps 0 0 0 1 0 0 0 0 0 

fa 1 1 0 0 1 1 1 1 1 

 

 

n 0 1 2 3 4 5 6 7 8 

Ps 0.0001 0.001 0.01 0.3 0.5 0 0 0 0 

fa 1 1 1 1 1 1 1 1 1 

 

 

0 1 2 3 4 

5 6 7 8 9 

10 11 12 13 14 

15 16 17 18 19 

20 21 22 23 24 

 

 

 

n 0 1 2 3 4 5 6 7 8 

Ps 0 0 0.015 0.97 0.015 0 0 0 0 

 

n 0 1 2 3 4 5 6 7 8 

Ps 0.05 0.1 0.2 1.0 0.2 0.1 0.05 0.025 0.0125 

fa 1 1 1 1 1 1 1 1 1 

 

If automaton start with the state S0 = [7, 12, 17], then
in case of the deterministic CGL its state diagram will look
as follows, see Fig. 4.
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Figure 4. States of the deterministic blinker automaton

However, after changing the spawning probability in such a way that instead of deterministic
values it will take the ones shown in Table 5.1, then as a result, the number of possible states rises.
With six cells that can end up in one of two states we have 26 = 64 possible outcomes for just �rst

Table 4. Probabilities of the cell rejuvenation for Conway's Game of Life with scale 0.41

n 0 1 2 3 4 5 6 7 8

Ps 0 0 0.015 0.97 0.015 0 0 0 0

transition. It means that probability to create a state that corresponds to the blinker structure is
PB = 0.97 ∗ (1 − 0.015) ∗ (1 − 0.015) = 0, 941. As the second state of blinker has exactly the same
relative cell distribution as the �rst one, its probabilities are exactly the same. Due to that one can
describe probability of blinker remaining stable for n cycles as Pb(n) = 0.941n. Because this function
is exponential in the cycle number, the probability of sustained stability drops quickly, see Fig. 5. Due

Figure 5. Stability of the stochastic blinker

to this fact, it is impossible to create long lasting stable patterns with stochastic cellular automaton.
One of solutions to this problem is provided by mixed automaton that have a group of states that
behave in stochastic manner and other that behave in deterministic one.

Fig. 4: States of the deterministic blinker automaton

However, after changing the spawning probability in
such a way that instead of deterministic values it will take
the ones shown in Table 4, then as a result, the number
of possible states rises. With six cells that can end up

Table 4: Probabilities of the cell rejuvenation for Conway’s Game of Life
with scale 0.41.

n 0 1 2 3 4 5 6 7 8 

Ps 0 0 0 1 0 0 0 0 0 

fa 1 1 0 0 1 1 1 1 1 

 

 

n 0 1 2 3 4 5 6 7 8 

Ps 0.0001 0.001 0.01 0.3 0.5 0 0 0 0 

fa 1 1 1 1 1 1 1 1 1 

 

 

0 1 2 3 4 

5 6 7 8 9 

10 11 12 13 14 

15 16 17 18 19 

20 21 22 23 24 

 

 

 

n 0 1 2 3 4 5 6 7 8 

Ps 0 0 0.015 0.97 0.015 0 0 0 0 

 

n 0 1 2 3 4 5 6 7 8 

Ps 0.05 0.1 0.2 1.0 0.2 0.1 0.05 0.025 0.0125 

fa 1 1 1 1 1 1 1 1 1 

 

in one of two stateswe have 26 = 64 possible outcomes
for just the first transition. It means that probability to
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create a state that corresponds to the blinker structure is
PB = 0.97∗ (1−0.015)∗ (1−0.015) = 0, 941. As the second
state of blinker has exactly the same relative cell distribu-
tion as the first one, its probabilities are exactly the same.
Due to that one can describe the probability of blinker re-
maining stable for n cycles as Pb(n) = 0.941n. Because this
function is exponential in the cycle number, the probability
of sustained stability drops quickly, see Fig. 5. Due to this

Approach for de�ning stochastic 2D cellular automata 5

Figure 4. States of the deterministic blinker automaton

However, after changing the spawning probability in such a way that instead of deterministic
values it will take the ones shown in Table 5.1, then as a result, the number of possible states rises.
With six cells that can end up in one of two states we have 26 = 64 possible outcomes for just �rst

Table 4. Probabilities of the cell rejuvenation for Conway's Game of Life with scale 0.41

n 0 1 2 3 4 5 6 7 8

Ps 0 0 0.015 0.97 0.015 0 0 0 0

transition. It means that probability to create a state that corresponds to the blinker structure is
PB = 0.97 ∗ (1 − 0.015) ∗ (1 − 0.015) = 0, 941. As the second state of blinker has exactly the same
relative cell distribution as the �rst one, its probabilities are exactly the same. Due to that one can
describe probability of blinker remaining stable for n cycles as Pb(n) = 0.941n. Because this function
is exponential in the cycle number, the probability of sustained stability drops quickly, see Fig. 5. Due

Figure 5. Stability of the stochastic blinker

to this fact, it is impossible to create long lasting stable patterns with stochastic cellular automaton.
One of solutions to this problem is provided by mixed automaton that have a group of states that
behave in stochastic manner and other that behave in deterministic one.

Fig. 5: Stability of the stochastic blinker.

fact, it is impossible to create long lasting stable patterns
with stochastic cellular automaton. One of solutions to this
problem is provided by mixed automaton that have a group
of states that behave in a stochastic manner and other that
behave in a deterministic one.

Stability of stochastic and semi-deterministic
automaton:

Mixed automaton

The automaton from Table 4 is also of the mixed type al-
though it does not display any interesting behaviour. This
happens because its deterministic states are either stable
void or are states that lead directly to it. The definition
of another automaton CA is proposed; this time its deter-
ministic states as well as ageing function are inspired by
CGL. However, unlike in CGL we will set all remaining
spawning probabilities to non-zero values, and L will be set
to 5 instead of 1, see Table 5. With those settings we get

Table 5: Configuration of the mixed automaton.

n 0 1 2 3 4 5 6 7 8 

Ps 0 0 0 1 0 0 0 0 0 

fa 1 1 0 0 1 1 1 1 1 

 

 

n 0 1 2 3 4 5 6 7 8 

Ps 0.0001 0.001 0.01 0.3 0.5 0 0 0 0 

fa 1 1 1 1 1 1 1 1 1 

 

 

0 1 2 3 4 

5 6 7 8 9 

10 11 12 13 14 

15 16 17 18 19 

20 21 22 23 24 

 

 

 

n 0 1 2 3 4 5 6 7 8 

Ps 0 0 0.015 0.97 0.015 0 0 0 0 

 

n 0 1 2 3 4 5 6 7 8 

Ps 0.05 0.1 0.2 1.0 0.2 0.1 0.05 0.025 0.0125 

fa 1 1 1 1 1 1 1 1 1 

 

an automaton that starting from void state will stabilize
around activity level 0.6, see Fig. 6. Visual analysis of this

automaton shows behaviour patterns similar to white noise,
see Fig. 7.
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5.2. Mixed automaton

The automaton from example ?? is also of the mixed type although it will not display any interesting
behaviour. This happens because its deterministic states are either stable void or are states that lead
directly to it. De�nition of another automaton CA is proposed, this time its deterministic states as well
as ageing function are inspired by CGL. However unlike in CGL we will set all remaining spawning
probabilities to non zero values and L will be set to 5 instead of 1, see Table 5.2. With that settings

Table 5. Con�guration of the mixed automaton

n 0 1 2 3 4 5 6 7 8

Ps 0.05 0.1 0.2 1.0 0.2 0.1 0.05 0.025 0.0125

fa 1 1 0 0 1 1 1 1 1

we get automaton that starting from void state will stabilize around activity level 0.6, see Fig. 6.
Visual analysis of this automaton shows behaviour patterns similar to white noise, see Fig.7. If we

Figure 6. Activity of the mixed automaton

feed cell array generated by the previous example into fully deterministic automaton with Conway's
like settings (except for maximum life energy which remains at the level L = 5), then the activity level
of automaton will not change drastically, see Fig. 8 . However upon visual inspection we can clearly
see that cell array display more regular maze like pattern.

Fig. 6: Activity of the mixed automaton.

If we feed the cell array generated by the previous exam-
ple into fully deterministic automaton with Conway like set-
tings (except for maximum life energy which remains at the
level L = 5), then the activity level of automaton will not
change drastically, see Fig. 8. However, upon visual inspec-
tion we can clearly see that cell array display more regular
maze like pattern. By looking at the given examples and atApproach for de�ning stochastic 2D cellular automata 7

Figure 7. Visualization of the mixed automaton

Figure 8. Activity of deterministic automaton feed with array generated by sto-
chastic one

Figure 9. Mixed automaton visualization

Fig. 7: Visualization of the mixed automaton.

wavefront automaton, two types of mixed automaton can
be identified.

• an automaton with high spawning probabilities for
stochastic states. Because of that they maintain sto-
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Figure 7. Visualization of the mixed automaton

Figure 8. Activity of deterministic automaton feed with array generated by sto-
chastic one

Figure 9. Mixed automaton visualization

Fig. 8: Activity of deterministic automaton feed with array generated by
stochastic one.
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Figure 7. Visualization of the mixed automaton

Figure 8. Activity of deterministic automaton feed with array generated by sto-
chastic one

Figure 9. Mixed automaton visualization
Fig. 9: Mixed automaton visualization.

chastic nature even while deterministic states appear
in the cell array.

• an automaton with low spawning probabilities for sto-
chastic states. In that case once the deterministic sta-
tes start appearing frequently enough the automaton
will lose its stochastic nature as spawning in non-
deterministic states appearing too infrequently to in-
fluence the automaton as a whole.

This nature of mixed automata means that it is possible
to generate different results while starting from void state.
This is useful for example in procedural level generation
[5] for computer games where designers want to hardcode
as little initial information and retrieve a large variety of
results.
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